Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645117

ABSTRACT

Glioblastomas (GBMs) are dreadful brain tumors with abysmal survival outcomes. GBM EVs dramatically affect normal brain cells (largely astrocytes) constituting the tumor microenvironment (TME). EVs from different patient-derived GBM spheroids induced differential transcriptomic, secretomic, and proteomic effects on cultured astrocytes/brain tissue slices as GBM EV recipients. The net outcome of brain cell differential changes nonetheless converges on increased tumorigenicity. GBM spheroids and brain slices were derived from neurosurgical patient tissues following informed consent. Astrocytes were commercially obtained. EVs were isolated from conditioned culture media by ultrafiltration, ultraconcentration, and ultracentrifugation. EVs were characterized by nanoparticle tracking analysis, electron microscopy, biochemical markers, and proteomics. Astrocytes/brain tissues were treated with GBM EVs before downstream analyses. EVs from different GBMs induced brain cells to alter secretomes with pro-inflammatory or TME-modifying (proteolytic) effects. Astrocyte responses ranged from anti-viral gene/protein expression and cytokine release to altered extracellular signal-regulated protein kinase (ERK1/2) signaling pathways, and conditioned media from EV-treated cells increased GBM cell proliferation. Thus, astrocytes/brain slices treated with different GBM EVs underwent non-identical changes in various 'omics readouts and other assays, indicating "personalized" tumor-specific GBM EV effects on the TME. This raises concern regarding reliance on "model" systems as a sole basis for translational direction. Nonetheless, net downstream impacts from differential cellular and TME effects still led to increased tumorigenic capacities for the different GBMs.

2.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37502951

ABSTRACT

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.

3.
Cell Death Dis ; 14(4): 254, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031195

ABSTRACT

Grey matter pathology is central to the progression of multiple sclerosis (MS). We discovered that MS plasma immunoglobulin G (IgG) antibodies, mainly IgG1, form large aggregates (>100 nm) which are retained in the flow-through after binding to Protein A. Utilizing an annexin V live-cell apoptosis detection assay, we demonstrated six times higher levels of neuronal apoptosis induced by MS plasma IgG aggregates (n = 190, from two cohorts) compared to other neurological disorders (n = 116) and healthy donors (n = 44). MS IgG aggregate-mediated, complement-dependent neuronal apoptosis was evaluated in multiple model systems including primary human neurons, primary human astrocytes, neuroblastoma SH-SY5Y cells, and newborn mouse brain slices. Immunocytochemistry revealed the co-deposition of IgG, early and late complement activation products (C1q, C3b, and membrane attack complex C5b9), as well as active caspase 3 in treated neuronal cells. Furthermore, we found that MS plasma cytotoxic antibodies are not present in Protein G flow-through, nor in the paired plasma. The neuronal apoptosis can be inhibited by IgG depletion, disruption of IgG aggregates, pan-caspase inhibitor, and is completely abolished by digestion with IgG-cleaving enzyme IdeS. Transmission electron microscopy and nanoparticle tracking analysis revealed the sizes of MS IgG aggregates are greater than 100 nm. Our data support the pathological role of MS IgG antibodies and corroborate their connection to complement activation and axonal damage, suggesting that apoptosis may be a mechanism of neurodegeneration in MS.


Subject(s)
Multiple Sclerosis , Neuroblastoma , Animals , Mice , Infant, Newborn , Humans , Immunoglobulin G/metabolism , Complement System Proteins/metabolism , Apoptosis
4.
J Infect Dis ; 218(8): 1324-1335, 2018 09 08.
Article in English | MEDLINE | ID: mdl-29788447

ABSTRACT

Background: Varicella zoster virus (VZV) can present as a myelopathy with spinal astrocyte infection. Recent studies support a role for the neurokinin-1 receptor (NK-1R) in virus infections, as well as for cytoskeletal alterations that may promote viral spread. Thus, we examined the role of NK-1R in VZV-infected primary human spinal astrocytes (HA-sps) to shed light on the pathogenesis of VZV myelopathy. Methods: Mock- and VZV-infected HA-sps were examined for substance P (subP) production, NK-1R localization, morphological changes, and viral spread in the presence or absence of the NK-1R antagonists aprepitant and rolapitant. Results: VZV infection of HA-sps induced nuclear localization of full-length and truncated NK-1R in the absence of the endogenous ligand, subP, and was associated with extensive lamellipodia formation and viral spread that was inhibited by NK-1R antagonists. Conclusions: We have identified a novel, subP-independent, proviral function of nuclear NK-1R associated with lamellipodia formation and viral spread that is distinct from subP-induced NK-1R cell membrane/cytoplasmic localization without lamellipodia formation. These results suggest that binding of a putative viral ligand to NK-1R produces a dramatically different NK-1R downstream effect than binding of subP. Finally, the NK-1R antagonists aprepitant and rolapitant provide promising alternatives to nucleoside analogs in treating VZV infections, including myelopathy.


Subject(s)
Active Transport, Cell Nucleus/physiology , Astrocytes/physiology , Astrocytes/virology , Herpesvirus 3, Human/physiology , Pseudopodia/physiology , Receptors, Neurokinin-1/metabolism , Aprepitant/pharmacology , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Neurokinin-1 Receptor Antagonists/pharmacology , Protein Isoforms , Spiro Compounds/pharmacology , Substance P
5.
Am J Physiol Cell Physiol ; 312(1): C56-C70, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27856430

ABSTRACT

Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and ß-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension.


Subject(s)
Endothelial Cells/physiology , Glycolysis/physiology , Neovascularization, Physiologic/physiology , Oxidative Phosphorylation , Vasa Vasorum/cytology , Vasa Vasorum/physiology , Animals , Cattle , Cells, Cultured , Endothelial Cells/cytology , Male , Receptors, Purinergic
6.
Biochim Biophys Acta ; 2007 Oct 12.
Article in English | MEDLINE | ID: mdl-19007922

ABSTRACT

The publisher regrets that this article is an accidental duplication of an article that has already been published in Biochim. Biophys. Acta, 1659 (2004) 83-91, doi:10.1016/j.bbabio.2004.03.019. The duplicate article has therefore been withdrawn.

7.
Biochim Biophys Acta ; 1659(1): 83-91, 2004 Nov 04.
Article in English | MEDLINE | ID: mdl-15511530

ABSTRACT

The Na(+)/Ca(2+) antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na(+) or Ca(2+). Na(+)/Ca(2+) exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca(2+) oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the K(m) for Ca(2+). When present on the same side as Ca(2+), K(+) activated exchange by lowering the K(m) for Ca(2+) from 2 to 0.9 microM. The K(m) for Na(+) was 8 mM. In the absence of Ca(2+), the exchanger catalyzed high rates of Na(+)/Li(+) and Na(+)/K(+) exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na(+)/Ca(2+) and Na(+)/K(+) exchange with IC(50) values of 10 and 0.6 microM, respectively. The V(max) for Na(+)/Ca(2+) exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.


Subject(s)
Calcium Signaling , Calcium/chemistry , Liposomes/chemistry , Membranes, Artificial , Mitochondria, Heart/metabolism , Sodium-Calcium Exchanger/chemistry , Sodium/chemistry , Animals , Cattle , Kinetics , Serum Albumin, Bovine/chemistry
8.
J Biol Chem ; 279(31): 32562-8, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15138282

ABSTRACT

The ATP-sensitive potassium channel from the inner mitochondrial membrane (mitoK(ATP)) is a highly selective conductor of K(+) ions. When isolated in the presence of nonionic detergent and reconstituted in liposomes, mitoK(ATP) is inhibited with high affinity by ATP (K((1/2)) = 20-30 microM). We have suggested that holo-mitoK(ATP) is a heteromultimer consisting of an inwardly rectifying K(+) channel (mitoKIR) and a sulfonylurea receptor (Grover, G. J., and Garlid, K. D. (2000) J. Mol. Cell. Cardiol. 32, 677-695). Here, we show that a 55-kDa protein isolated by ethanol extraction and reconstituted in bilayer lipid membranes and liposomes is the mitoKIR. This protein, which lacks the sulfonylurea receptor subunit, is inhibited with low affinity by ATP, with K(1/2) approximately 550 microM. ATP inhibition of both mitoKIR and holo-mitoK(ATP) is reversed by UDP (K((1/2))1/2 = 10-15 microM). Holo-mitoK(ATP) is and diazoxide, and the opened by cromakalim flux through the open channel is inhibited by glibenclamide and 5-hydroxydecanoate. None of these agents has any effect upon mitoKIR. We have identified two compounds that act specifically on mitoKIR. p-diethylaminoethylbenzoate reverses inhibition of mitoKIR by ATP and ADP at micromolar concentrations and also opens mitoK(ATP) in isolated mitochondria. Tetraphenylphosphonium inhibits K(+) flux through both mitoKIR and mitoK(ATP) with the same apparent affinity. These findings support the hypothesis that the 55-kDa mitoKIR is the channel component of mitoK(ATP).


Subject(s)
Membrane Proteins/chemistry , Potassium Channels, Inwardly Rectifying , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/chemistry , Animals , Benzoates/pharmacology , Brain/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Electrophysiology , Ions , Kinetics , Lipid Bilayers/metabolism , Liposomes/metabolism , Liver/metabolism , Magnesium/chemistry , Membrane Proteins/metabolism , Mitochondria/metabolism , Models, Biological , Potassium/chemistry , Potassium/metabolism , Potassium Channels/chemistry , Potassium Channels/metabolism , Rats , Receptors, Drug/chemistry , Receptors, Drug/metabolism , Sulfonylurea Receptors , Time Factors , Uridine Diphosphate/metabolism
9.
Biochim Biophys Acta ; 1606(1-3): 23-41, 2003 Sep 30.
Article in English | MEDLINE | ID: mdl-14507425

ABSTRACT

Potassium transport plays three distinct roles in mitochondria. Volume homeostasis to prevent excess matrix swelling is a housekeeping function that is essential for maintaining the structural integrity of the organelle. This function is mediated by the K(+)/H(+) antiporter and was first proposed by Peter Mitchell. Volume homeostasis to prevent excess matrix contraction is a recently discovered function that maintains a fully expanded matrix when diffusive K(+) influx declines due to membrane depolarization caused by high rates of electron transport. Maintaining matrix volume under these conditions is important because matrix contraction inhibits electron transport and also perturbs the structure-function of the intermembrane space (IMS). This volume regulation is mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). Cell signaling functions to protect the cell from ischemia-reperfusion injury and also to trigger transcription of genes required for cell growth. This function depends on the ability of mitoK(ATP) opening to trigger increased mitochondrial production of reactive oxygen species (ROS). This review discusses the properties of the mitochondrial K(+) cycle that help to understand the basis of these diverse effects.


Subject(s)
Membrane Proteins/physiology , Mitochondria/physiology , Potassium/physiology , Animals , Biological Transport , Humans , Intracellular Membranes/physiology , Membrane Potentials/physiology , Mitochondria/ultrastructure , Mitochondria, Heart/physiology , Mitochondria, Heart/ultrastructure , Potassium Channels
10.
Biochim Biophys Acta ; 1606(1-3): 1-21, 2003 Sep 30.
Article in English | MEDLINE | ID: mdl-14507424

ABSTRACT

Coronary artery disease and its sequelae-ischemia, myocardial infarction, and heart failure-are leading causes of morbidity and mortality in man. Considerable effort has been devoted toward improving functional recovery and reducing the extent of infarction after ischemic episodes. As a step in this direction, it was found that the heart was significantly protected against ischemia-reperfusion injury if it was first preconditioned by brief ischemia or by administering a potassium channel opener. Both of these preconditioning strategies were found to require opening of a K(ATP) channel, and in 1997 we showed that this pivotal role was mediated by the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). This paper will review the evidence showing that opening mitoK(ATP) is cardioprotective against ischemia-reperfusion injury and, moreover, that mitoK(ATP) plays this role during all three phases of the natural history of ischemia-reperfusion injury preconditioning, ischemia, and reperfusion. We discuss two distinct mechanisms by which mitoK(ATP) opening protects the heart-increased mitochondrial production of reactive oxygen species (ROS) during the preconditioning phase and regulation of intermembrane space (IMS) volume during the ischemic and reperfusion phases. It is likely that cardioprotection by ischemic preconditioning (IPC) and K(ATP) channel openers (KCOs) arises from utilization of normal physiological processes. Accordingly, we summarize the results of new studies that focus on the role of mitoK(ATP) in normal cardiomyocyte physiology. Here, we observe the same two mechanisms at work. In low-energy states, mitoK(ATP) opening triggers increased mitochondrial ROS production, thereby amplifying a cell signaling pathway leading to gene transcription and cell growth. In high-energy states, mitoK(ATP) opening prevents the matrix contraction that would otherwise occur during high rates of electron transport. MitoK(ATP)-mediated volume regulation, in turn, prevents disruption of the structure-function of the IMS and facilitates efficient energy transfers between mitochondria and myofibrillar ATPases.


Subject(s)
Membrane Proteins/physiology , Mitochondria, Heart/physiology , Potassium/metabolism , Animals , Biological Transport , Cardiotonic Agents , Humans , Myocardial Reperfusion Injury/prevention & control , Potassium Channels
11.
Am J Physiol Heart Circ Physiol ; 283(1): H284-95, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12063301

ABSTRACT

Diazoxide opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the heart against ischemia-reperfusion injury by unknown mechanisms. We investigated the mechanisms by which mitoK(ATP) channel opening may act as an end effector of cardioprotection in the perfused rat heart model, in permeabilized fibers, and in rat heart mitochondria. We show that diazoxide pretreatment preserves the normal low outer membrane permeability to nucleotides and cytochrome c and that these beneficial effects are abolished by the mitoK(ATP) channel inhibitor 5-hydroxydecanoate. We hypothesize that an open mitoK(ATP) channel during ischemia maintains the tight structure of the intermembrane space that is required to preserve the normal low outer membrane permeability to ADP and ATP. This hypothesis is supported by findings in mitochondria showing that small decreases in intermembrane space volume, induced by either osmotic swelling or diazoxide, increased the half-saturation constant for ADP stimulation of respiration and sharply reduced ATP hydrolysis. These effects are proposed to lead to preservation of adenine nucleotides during ischemia and efficient energy transfer upon reperfusion.


Subject(s)
Mitochondria, Heart/metabolism , Myocardial Ischemia/metabolism , Myocardium/metabolism , Potassium Channels/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Respiration/drug effects , Cell Respiration/physiology , Creatine/metabolism , Diazoxide/pharmacology , Hemodynamics , In Vitro Techniques , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Myocardial Ischemia/drug therapy , Osmolar Concentration , Oxidative Phosphorylation/drug effects , Perfusion , Permeability/drug effects , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...