Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641593

ABSTRACT

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Subject(s)
Candida glabrata , Oleic Acid , Candida glabrata/genetics , Candida glabrata/metabolism , Oleic Acid/metabolism , Carbon/metabolism , Glycerol , Antifungal Agents/metabolism , Oxidative Stress , Biofilms , Glucose/metabolism , Glyoxylates/metabolism
2.
Int J Antimicrob Agents ; 63(3): 107091, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242249

ABSTRACT

The specialised small molecules encoded by commensal microbes mediate distinct functional interactions. However, there is a landscape of antagonistic interactions mediated by specialised strains and their small molecules. Herein, the antagonistic landscape within a collection of 330 human gut-derived commensal microbial strains was elucidated to evaluate antimicrobial interactions as a defensive contributor, and gain new insights into structure-related functions. The potential antagonistic gut-derived strains displayed strain-specific selective inhibition. This is in contrast to common antimicrobial drugs, which typically wipe out a broad range of species and are usually found in environmental microbes. Genome sequencing of representative gut strains revealed the presence of significant biosynthetic gene clusters (BGCs) encoding compound families that contribute to antagonistic activities, and are important in host defence and maintaining gut homeostasis. Subsets of these BGCs were abundant in metagenomic sequencing data from healthy individuals. Furthermore, the cell culture secretome of these strains revealed potential biomarkers linked to hallmark pathways. These microorganisms have biosynthetic novelty and are a source of biologically significant natural products. Such natural products are essential in the development of new antimicrobial agents to reduce the usage of broad-spectrum antibiotics and combat antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Biological Products , Humans , Homeostasis , Anti-Bacterial Agents/pharmacology , Chromosome Mapping , Metagenome
3.
Article in English | MEDLINE | ID: mdl-37462829

ABSTRACT

Xanthomonas oryzae causes tremendous damage in rice plants (Oryza sativa L). Therefore, this study is focused on siderophore-producing Bacillus albus (CWTS 10) for managing BLB disease caused by X. oryzae. Both B. albus and its crude siderophore (methanolic and diethyl ether) extracts inhibited X. oryzae (10-12 mm). Fourier transform infrared spectroscopy (FTIR) analysis of the extracts indicated the presence of catecholate siderophore functional groups. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed the presence of antimicrobial compounds such as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone. Complete genome sequencing revealed the gene clusters for antibiotic, siderophore, antibacterial, antifungal, and secondary metabolite production. An in vivo study revealed that bacteria (CWTS 10) and their siderophore extracts effectively inhibited X. oryzae. The mode of application of bacterial or siderophore extracts in terms of DI and DSI percentage was as follows: soak method > inoculation method > spray method. In addition to providing enhanced antagonistic activity, there was a significant increase in root and shoot length and weight (wet and dry) of treated plants compared to control plants challenged with X. oryzae. Thus, the results clearly indicate that siderophore-producing B. albus and its siderophore extracts strongly inhibited X. oryzae. However, further field experiments are required before being formulated to protect rice crops from X. oryzae.

4.
3 Biotech ; 13(6): 214, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37251727

ABSTRACT

Biogeochemical reduction and mobilization of sediment-bound arsenic (As) is the major concern for widespread groundwater As contamination in the middle Gangetic plains. The present work examines a microcosm based bio-stimulation study and substrate amendments over 45 days to analyze the bacterial community structure and distribution to indicate the possible in-situ bioremediation strategy in the area. Initially, Bacterial phyla Proteobacteria was predominantly present in all the samples, followed by Actinobacteria, Bacteroidetes, and Firmicutes whereas Cyanobacteria was noted as the minor group. In genus level, Delftia, Acinetobacter, Lysobacter, Bacillus, and Pseudomonas were the major groups of bacteria in the As-rich aquifer system, while Planctomycetes dominated the bio-stimulated samples, followed by a minute portion of Proteobacteria. Alpha diversity and Chaol curve further determined the species richness in the samples with an As tolerant capacity of 152.28 ppb. The presence of γ-Proteobacteria as the dominating member in high As-content water indicated their predominant role in As mobilization, whereas, dominance of α-Proteobacterial members in low As-content water indicated their involvement in As detoxification. The complete change in microbial community structure within the bio-stimulated conditions indicated the extensive role of arsenite-oxidizing microbial communities within different levels of As-contaminated areas in Bihar that will enlighten the significant role of these communities in As-biogeochemical cycle. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03612-0.

5.
J Appl Microbiol ; 134(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37002541

ABSTRACT

AIM: The aims of this study were to explore the antagonistic potential of siderophore-producing Bacillus subtilis (CWTS 5) for the suppression of Ralstonia solanacearum and to explore the mechanisms of inhibition by FTIR, LC-MS, and whole genome analysis. METHODS AND RESULTS: A siderophore-producing B. subtilis (CWTS 5) possessing several plant growth-promoting properties such as IAA and ACC deaminase production, phosphate solubilization, and nitrogen fixation was assessed for its inhibitory effect against R. solanacearum, and its mechanisms were explored by in vitro and in vivo analyses. The active secondary metabolites in the siderophore extracts were identified as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone by LC-MS analysis. The Arnow's test and antiSMASH analysis confirmed the presence of catecholate siderophores, and the functional groups determined by FTIR spectroscopy confirmed the presence of secondary metabolites in the siderophore extract possessing antagonistic effect. The complete genome sequence of CWTS 5 revealed the gene clusters responsible for siderophore, antibiotics, secondary metabolite production, and antibacterial and antifungal metabolites. Furthermore, the evaluation of CWTS 5 against R. solanacearum in pot studies demonstrated 40.0% reduced disease severity index (DSI) by CWTS 5, methanolic extract (DSI-26.6%), ethyl acetate extract (DSI-20.0%), and increased plant growth such as root and shoot length, wet weight and dry weight of Solanum lycopersicum L. owing to its antagonistic potential. This genomic insight will support future studies on the application of B. subtilis as a plant growth promoter and biocontrol agent against R. solanacearum for bacterial wilt management. CONCLUSION: The results of this study revealed that B. subtilis (CWTS 5) possesses multiple mechanisms that control R. solanacearum, reduce disease incidence, and improve S. lycopersicum growth.


Subject(s)
Bacillus subtilis , Ralstonia solanacearum , Bacillus subtilis/physiology , Ralstonia solanacearum/genetics , Siderophores , Plants , Anti-Bacterial Agents , Whole Genome Sequencing , Plant Diseases/prevention & control , Plant Diseases/microbiology
6.
Sci Total Environ ; 858(Pt 3): 160178, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36379333

ABSTRACT

Sewage wastewater pollutes water and poses a public health issue but it could also prove useful in certain research domains. Sewage is a complex niche relevant for research concerning 'one-health', human health, pollution and antibiotic resistance. Indian gut microbiome is also understudied due to sampling constraints and sewage could be used to explore it. Ostensibly, Indian sewage needs to be studied and here, we performed a cross-sectional pan-India sewage sampling to generate the first comprehensive Indian sewage microbiome. Indian sewage showed predominance of Burkholderiaceae, Rhodocyclaceae, Veillonellaceae, Prevotellaceae, etc. and has high representation of gut microbes. The identified gut microbes have overrepresentation of Veillonellaceae, Rikenellaceae, Streptococcaceae, and Bacillaceae. Imputed metagenomics of sewage microbiome indicated dominance of transport, motility, peptidases, amino acid metabolism, and antibiotic resistance genes. Microbiome-disease associations drawn using simple decision tree and random forest analysis identified specific microbes as potential predictors of diabetes and obesity in a city. Altogether, we generated the first Indian sewage microbiome and our non-invasive, high-throughput workflow could be emulated for future research, wastewater-based epidemiology and designing policies concerning public health.


Subject(s)
Metagenomics , Sewage , Humans , Cross-Sectional Studies , India
7.
Int J Phytoremediation ; 25(7): 900-906, 2023.
Article in English | MEDLINE | ID: mdl-36062907

ABSTRACT

Worldwide accumulation of e-waste poses a major threat to environmental health. However, printed circuit boards contain precious metals, such as gold, and silver, and also contain micronutrient metal elements, such as Fe, Cu, Zn, etc. Therefore, the present study investigated the effects of e-waste-tolerant bacteria (ETB) on promoting plant growth in e-waste-amended soils and mobilizing trace metals into the plants. For this, a total of 18 bacteria were isolated and screened for e-waste tolerance. Screening for plant growth-promoting properties revealed the production of indole-3-acetic acid-like compounds, siderophore production, and phosphate solubilization. Identification based on 16S rRNA gene sequencing revealed that all isolates belonged to the genus Bacillus. Pot experiment revealed that the treated seeds showed the enhancement of chili plants root growth ranging from 106.55 to 208.07% compared to control plants (e-waste) and 0.0 to 47.90% (without e-waste). A similar enhancement was also observed in the shoot length, and size of the leaf compared to e-waste amended control plants. Inoculation of ETB significantly (p < 0.05) mobilized Fe, Zn, Cu, and Ni into chili plants. The identified ETB could be used to mitigate the toxicity posed by the e-waste, enhancing plant growth and mobilization of micronutrients into plants from e-waste.


Bacillus species identified in this study are the potential e-tolerant (PCB) PGP bacteria. Inoculation of e-tolerant bacteria resulted in increased plant growth attributes and biomass index in e-waste amended soil. Bacterial inoculation also showed maximum uptake of Cu, Fe, Zn, and Ni from the e-waste amended soil. This study demonstrated that micronutrients can be fortified/mobilized from e-waste using PGP bacteria.


Subject(s)
Electronic Waste , Soil Pollutants , Trace Elements , Soil , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Metals/metabolism , Trace Elements/metabolism , Soil Pollutants/metabolism , Soil Microbiology
8.
Microbiol Resour Announc ; 11(12): e0090722, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36346239

ABSTRACT

Bradyrhizobium denitrificans K2, isolated from an air circulation environment, has potential genes participating in inorganic nitrogen and carbon cycling. The draft genome comprises 8.31 Mb, with 7,982 coding sequences and 64.81% average G+C content. Genes related to carbon and inorganic nitrogen cycling were observed in the draft genome.

9.
Microbiol Res ; 263: 127157, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944355

ABSTRACT

Rice is a major food crop cultivated around the globe. Specially scented rice varieties are of commercial importance but they are low-yielding. The rhizospheric microflora plays a significant role in improving yield and aroma. However, the core microbiome of the scented rice rhizosphere is comparatively less explored. Here, we analyzed the core microbiome associated with the rhizosphere of the scented (Ambemohar-157 and Dehradun basmati) in comparison with non-scented rice (Kolam and Arize 6444 Gold) cultivated at two different geoclimatic zones of India (Maharashtra and Uttarakhand) using the metagenomics approach. The alpha and beta diversity analysis showed that the microbial communities associated with scented and non-scented varieties significantly changes with respect to richness, diversity, and evenness. The taxonomic profiling revealed the variation in composition, diversity, and abundance of the microbiome in terms of phyla and genera associated with scented rice varieties over non-scented. The cluster analysis distinguishes the microbial communities based on their geographical positions. The core microbiome analysis revealed that scented rice rhizosphere shelters distinct and unique microbiota. 28.6 % of genera were exclusively present only in the scented rice rhizosphere. The putative functional gene annotation revealed the high abundance of genes related to the biosynthesis of 2-acetyl-1-pyrroline (2AP) precursors in scented rice. The precursor feeding analysis revealed proline as a preferred substrate by 2AP synthesizing bacteria. The 2AP precursor proline and proline metabolism genes showed a positive correlation. The scented rice-specific rhizobacteria pointed out in this study can be used as bio-inoculants for enhancing aroma, yield, and sustainable rice cultivation.


Subject(s)
Microbiota , Oryza , India , Metagenomics , Microbiota/genetics , Oryza/microbiology , Proline/metabolism , Rhizosphere , Soil Microbiology
10.
Arch Microbiol ; 204(8): 495, 2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35842875

ABSTRACT

The microbial diversity in the Indian caves is inadequately characterized. This study reports on the culturable microbial communities in caves from the Indian sub-continent. This study aims to expand the current understanding of bacterial diversity in the speleothems and wall deposits from Krem Soitan, Krem Lawbah, Krem Mawpun in Khasi Hills, Meghalaya, India. A culture-dependent approach was employed for elucidating the community structure in the caves using MALDI-TOF spectrometry and 16S rRNA gene sequencing. A high bacterial diversity and a greater bacterial taxonomic diversity is reported using MALDI-TOF spectrometry and 16S rRNA gene sequencing. High microbial enumerations were observed on dilute nutrient agar (5.3 × 103 to 8.8 × 105) followed by M9 minimal medium (4 × 104 to 1.7 × 105) and R2A medium (1.0 × 104 to 5.7 × 105). A total of 826 bacterial isolates were selected and preserved for the study. 295 bacterial isolates were identified using MALDI-TOF spectrometry and the isolates which showed no reliable peaks were further identified by 16S rRNA gene sequencing. A total 91% of the bacterial diversity was dominated by Proteobacteria (61%) and Actinobacteria (30%). In addition, bacterial phyla include Firmicutes (7.45%), Deinococcus-Thermus (0.33%) and Bacteroidetes (0.67%) were found in the samples. At the genus level, Pseudomonas (55%) and Arthrobacter (23%) were ubiquitous followed by Acinetobacter, Bacillus, Brevundimonas, Deinococcus, Flavobacterium, Paenibacillus, Pseudarthrobacter. Multivariate statistical analysis indicated that the bacterial genera formed separate clusters depending on the geochemical constituents in the spring waters suitable for their growth and metabolism. To the best of our knowledge, there are no previous geomicrobiological investigations in these caves and this study is a pioneering culture dependent study of the microbial community with many cultured isolates.


Subject(s)
Bacteria , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrum Analysis
11.
Gene ; 836: 146671, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35714801

ABSTRACT

Insights into the application of endophytic bacilli in sustainable agricultural practices have opened up new avenues for the inhibition of soil-borne pathogens and the improvement of plant health. Bacillus subtilis K1, an endophytic bacterium originally isolated from aerial roots of Ficus benghalensis is a potential biocontrol agent secreting a mixture of surfactins, iturins and fengycins. The current study extends the characterization of this bacterium through genomic and comparative genomics approaches. The sequencing of the bacterial genome at Illumina MiSeq platform revealed that it possessed a 4,103,502-bp circular chromosome with 45.98% GC content and 4325 predicted protein-coding sequences. Based on phylogenomics and whole-genome average nucleotide identity, the B. subtilis K1 was taxonomically classified as Bacillus velezensis. The formerly evaluated phenotypic traits viz. C-source utilization and lipopeptide-mediated fungal antagonism were correlated to their molecular determinants. The genome also harbored several genes associated with induced systemic resistance and plant growth promotion i.e, phytohormone production, nitrogen assimilation and reduction, siderophore production, phosphate solubilization, biofilm formation, swarming motility, acetoin and butanediol synthesis. The production of antifungal volatile organic compounds and plant growth promotion was experimentally demonstrated by volatile compound assay and seed germination assay on cumin and groundnut. The isolate also holds great prospects for application as a soil inoculant as indicated by enhancement in the growth of groundnut via in planta pot studies. Bacterial pan-genome analysis based on a comparison of whole genomes with eighteen other Bacillus strains was also conducted. Comparative examination of biosynthetic gene clusters across all genomes indicated that the largest number of gene clusters were harbored by the K1 genome. Based on the findings, we propose K1 as a model for scrutinizing non-ribosomally synthesized peptide synthetase and polyketide synthetase derived molecules.


Subject(s)
Bacillus , Endophytes , Bacillus/genetics , Bacillus subtilis/physiology , Biological Control Agents , Endophytes/chemistry , Endophytes/genetics , Genome, Bacterial , Plant Diseases/microbiology , Soil
12.
BMC Microbiol ; 21(1): 177, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34116639

ABSTRACT

BACKGROUND: A bacterial consortium SCP comprising three bacterial members, viz. Stenotrophomonas acidaminiphila APG1, Pseudomonas stutzeri APG2 and Cellulomonas sp. APG4 was developed for degradation of the mono-azo dye, Reactive Blue 28. The genomic analysis of each member of the SCP consortium was done to elucidate the catabolic potential and role of the individual organism in dye degradation. RESULTS: The genes for glycerol utilization were detected in the genomes of APG2 and APG4, which corroborated with their ability to grow on a minimal medium containing glycerol as the sole co-substrate. The genes for azoreductase were identified in the genomes of APG2 and APG4, while no such trait could be determined in APG1. In addition to co-substrate oxidation and dye reduction, several other cellular functions like chemotaxis, signal transduction, stress-tolerance, repair mechanisms, aromatic degradation, and copper tolerance associated with dye degradation were also annotated. A model for azo dye degradation is postulated, representing the predominant role of APG4 and APG2 in dye metabolism while suggesting an accessory role of APG1. CONCLUSIONS: This exploratory study is the first-ever attempt to divulge the genetic basis of azo-dye co-metabolism by cross-genome comparisons and can be harnessed as an example for demonstrating microbial syntrophy.


Subject(s)
Azo Compounds/metabolism , Cellulomonas/metabolism , Coloring Agents/metabolism , Pseudomonas stutzeri/metabolism , Stenotrophomonas/metabolism , Biodegradation, Environmental , Cellulomonas/genetics , Cellulomonas/growth & development , Culture Media/metabolism , Genome, Bacterial , Microbial Consortia , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/growth & development , Stenotrophomonas/genetics , Stenotrophomonas/growth & development
13.
Crit Rev Microbiol ; 46(6): 631-653, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32991226

ABSTRACT

Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Sodium Chloride/metabolism , Bacteria/classification , Bacteria/isolation & purification , Ecosystem , Metagenome , Metagenomics , Microbiota , Phylogeny
14.
mSystems ; 5(2)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32234773

ABSTRACT

Type 2 diabetes (T2D) is a complex metabolic syndrome characterized by insulin dysfunction and abnormalities in glucose and lipid metabolism. The gut microbiome has been recently identified as an important factor for development of T2D. In this study, a total of 102 subjects were recruited, and we have looked at the gut microbiota of prediabetics (PreDMs) (n = 17), newly diagnosed diabetics (NewDMs) (n = 11), and diabetics on antidiabetic treatment (KnownDMs) (n = 39) and compared them with healthy nondiabetics (ND) (n = 35). Twenty-five different serum biomarkers were measured to assess the status of diabetes and their association with gut microbiota. Our analysis revealed nine different genera as differentially abundant in four study groups. Among them, Akkermansia, Blautia, and Ruminococcus were found to be significantly (P < 0.05) decreased, while Lactobacillus was increased in NewDMs compared to ND and recovered in KnownDMs. Akkermansia was inversely correlated with HbA1c and positively correlated with total antioxidants. Compared to ND, there was increased abundance of Megasphaera, Escherichia, and Acidaminococcus and decreased abundance of Sutterella in KnownDMs. Among many taxa known to act as community drivers during disease progression, we observed genus Sutterella as a common driver taxon among all diabetic groups. On the basis of the results of random forest analysis, we found that the genera Akkermansia and Sutterella and that the serum metabolites fasting glucose, HbA1c, methionine, and total antioxidants were highly discriminative factors among studied groups. Taken together, our data revealed that gut microbial diversity of NewDMs but not of PreDMs is significantly different from that of ND. Interestingly, after antidiabetic treatment, the microbial diversity of KnownDMs tends to recover toward that of ND.IMPORTANCE Gut microbiota is considered to play a role in disease progression, and previous studies have reported an association of microbiome dysbiosis with T2D. In this study, we have attempted to investigate gut microbiota of ND, PreDMs, NewDMs, and KnownDMs. We found that the genera Akkermansia and Blautia decreased significantly (P < 0.05) in treatment-naive diabetics and were restored in KnownDMs on antidiabetic treatment. To the best of our knowledge, comparative studies on shifts in the microbial community in individuals of different diabetic states are lacking. Understanding the transition of microbiota and its association with serum biomarkers in diabetics with different disease states may pave the way for new therapeutic approaches for T2D.

15.
Data Brief ; 29: 105336, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32154356

ABSTRACT

The bacterial isolates of genus Rhodococcus are best known for their significant biodegradation abilities. Here, we report the data related to draft genome sequencing of Rhodococcus rhodochrous strain SPC17 isolated from sediments of Lonar Lake. The de novo assembly of 1598096 Illumina's paired-end sequencing reads resulted in 51 contigs for an overall genome assembly size of 4.98Mb. A total of 4546 genes were predicted using the National Center for Biotechnology Information- Prokaryotic Genome Annotation Pipeline (NCBI-PGAP). RAST server-based annotation of the Rhodococcus strain SPC17 genome resulted in a total of 295 subsystems with 25% subsystem coverage. The data on the draft genome shotgun project are accessible at NCBI-GenBank under the accession number WUUR00000000. Our data resource will facilitate further molecular and genomic studies of diverse hydrocarbon catabolizing genes present in Rhodococcus rhodochrous strain SPC17.

16.
Environ Pollut ; 261: 114124, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32078878

ABSTRACT

Groundwater arsenic pollution causes millions of deaths worldwide. Long term natural and anthropogenic activities have increased arsenic levels in groundwater causing higher threats of arsenic exposure. Arsenic hyper-tolerant Firmicute Bacillus firmus L-148 was isolated from arsenic limiting Lonar lake soil, which tolerated more than 3 M arsenic and could oxidize 75 mM arsenite [As(III)] in 14 days. It oxidized As(III) in presence of heavy metals and had unusual pH optima at 9.2. B. firmus L-148 was studied at the biochemical, protein, genomic and transcript level for understanding its arsenic oxidizing machinery. The proteomic and transcript analysis exhibited the presence of ars and aio operon and supported the inducible nature of ars operon. Robust, hyper-tolerant, fast As(III) oxidizing, least nutrient requiring and multi-metal resistance qualities of the strain were used in microcosm studies for bioremediation. Artificial groundwater mimicking microcosm with 75 mM As(III) was developed. Modulation of carbon source, iron and multi metals affected growth and As(III) oxidation rate. The As(III) oxidation was recorded to be 77% in 15 days in presence of sodium acetate and Fe ions. This microcosm study can be explored for bioremediation of arsenic contaminated water and followed by precipitation using other methods.


Subject(s)
Arsenic/analysis , Bacillus firmus , Groundwater , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Proteomics
17.
Appl Environ Microbiol ; 85(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-31053581

ABSTRACT

Idli, a naturally fermented Indian food, is prepared from a mixture of rice and black gram (lentil). To understand its microbial community during fermentation, detailed analysis of the structural and functional dynamics of the idli microbiome was performed by culture-dependent and -independent approaches. The bacterial diversity and microbial succession were assessed at different times of fermentation by 16S rRNA amplicon sequencing. Results highlighted that most microbiota belonged to phylum Firmicutes (70%) and Proteobacteria (22%). Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) analysis confirmed the diversity and succession involved therein. A culture-dependent approach revealed that the microbially diverse populations were conserved across different geographical locations. The fermentation was primarily driven by lactic acid bacteria as they constitute 86% of the total bacterial population, and genus Weissella emerged as the most important organism in fermentation. The natural microbiota of the grains mainly drives the fermentation, as surface sterilized grains did not show any fermentation. Growth kinetics of idli microbiota and physicochemical parameters corroborated the changes in microbial dynamics, acid production, and leavening occurring during fermentation. Using a metagenomic prediction tool, we found that the major metabolic activities of these microbial fermenters were augmented during the important phase of fermentation. The involvement of the heterofermentative hexose monophosphate (HMP) pathway in batter leavening was substantiated by radiolabeled carbon dioxide generated from d-[1-14C]-glucose. Hydrolases degrading starch and phytins and the production of B vitamins were reported. Moreover, culturable isolates showing beneficial attributes, such as acid and bile tolerance, hydrophobicity, antibiotic sensitivity, and antimicrobial activity, suggest idli to be a potential dietary supplement.IMPORTANCE This is a comprehensive analysis of idli fermentation employing modern molecular tools which provided valuable information about the bacterial diversity enabling its fermentation. The study has demonstrated the relationship between the bacterial population and its functional role in the process. The nature of idli fermentation was found to be more complex than other food fermentations due to the succession of the bacterial population. Further studies using metatranscriptomics and metabolomics may enhance the understanding of this complex fermentation process. Moreover, the presence of microorganisms with beneficial properties plausibly makes idli a suitable functional food.


Subject(s)
Bacteria/isolation & purification , Fermentation , Food Microbiology , Microbiota , Oryza/microbiology , Bacteria/classification , Breakfast , India , Oryza/metabolism
18.
Environ Pollut ; 250: 567-577, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31026705

ABSTRACT

The present study deals with the cyto-genotoxicological impact of ionic liquids, 1-butyl-3-methylimidazolium bromide, trihexyl tetradecylphosphonium dicyanamide, 1-decyl-3-methylimidazolium tetrafluoroborate, benzyldimethyltetradecylammonium chloride, and 1-butyl-4-methylpyridinium chloride, on animal cells and their biodegradation. The long alkyl chain containing ionic liquids were found to be more toxic whereas benzene functional group in benzyldimethyltetradecylammonium chloride enhances its toxicity. Aerobic bacterial granules, a bacterial consortium, were developed that have promising ability to break down these organic pollutants. These aerobic bacterial granules have been applied for the biodegradation of ionic liquids. The biological oxygen demand (5 days) and chemical oxygen demand parameters confirmed that the biodegradation was solely due to aerobic bacterial granules which further decreased the time period needed for regular biodegradation by biological oxygen demand (28 days). The high resolution mass spectrometry analysis further approved that the degradation of ionic liquids was mainly via removal of the methyl group. Elevated N-demethylase enzyme activity supports the ionic liquids degradation which may be occurring through demethylation mechanism. The amplicon sequencing of aerobic bacterial granules gives insight into the involvement of the bacterial community in the biodegradation process.


Subject(s)
Biodegradation, Environmental , Ionic Liquids/chemistry , Animals , Biological Oxygen Demand Analysis , Cytotoxins/chemistry , Imidazoles/chemistry , Ionic Liquids/toxicity , Mutagens/chemistry , Mutagens/toxicity , Oxygen/chemistry
19.
Water Res ; 122: 603-613, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28628882

ABSTRACT

Treatment of textile wastewater containing anthraquinone dye is quite a huge challenge due to its complex aromatic structure and toxicity. Present study deals with the degradation and detoxification of anthraquinone dye reactive blue 4 using aerobic bacterial granules. Bacterial granules effectively decolorized reactive blue 4 at wide range of pH (4.0-11.0) and temperature (20-55 °C) as well as decolorized and tolerated high concentration of reactive blue 4 dye upto 1000 mg l-1 with Vmax 6.16 ± 0.82 mg l-1 h-1 and Km 227 ± 41 mg l-1. Metagenomics study evaluates important role of Clostridia, Actinobacteria, and Proteobacterial members in biotransformation and tolerance of high concentrations of reactive blue 4 dye. Up-regulation of xenobiotic degradation and environmental information processing pathways during dye exposure signifies their noteworthy role in dye degradation. Biotransformation of dye was confirmed by significant decrease in the values of total suspended solids, biological and chemical oxygen demand. The metabolites formed after biotransformation was characterized by FT-IR and GC-MS analysis. The reactive blue 4 dye was found to be phytotoxic, cytotoxic and genotoxic whereas its biotransformed product were non-toxic. This study comprehensively illustrates that, bacterial aerobic granules can be used for eco-friendly remediation and detoxification of wastewater containing high organic load of anthraquinone dye.


Subject(s)
Bacteria, Aerobic/metabolism , Biotransformation , Triazines/chemistry , Anthraquinones , Biodegradation, Environmental , Coloring Agents , Spectroscopy, Fourier Transform Infrared
20.
Stand Genomic Sci ; 12: 15, 2017.
Article in English | MEDLINE | ID: mdl-28163824

ABSTRACT

Probiotic Lactobacillus species offer various health benefits, thus have been employed in treatment and prevention of various diseases. Due to the differences in the isolation source and the site of action, most of the lactobacilli tested in-vitro for probiotics properties fail to extend similar effects in-vivo. Consequently, the search of autochthonous, efficacious and probably population specific probiotics is a high priority in the probiotics research. In this regards, whole genome sequencing of as many Lactobacillus as possible will help to deepen our understanding of biology and their health effects. Here, we provide the genomic insights of two coherent oxalic acid tolerant Lactobacillus species (E2C2 and E2C5) isolated from two different healthy human gut flora. These two isolates were found to have higher tolerance towards oxalic acid (300 mM sodium oxalate). The draft genome of strain E2C2 consists of 3,603,563 bp with 3289 protein-coding genes, 94 RNA genes, and 43.99% GC content, while E2C5 contained 3,615,168 bp, 3293 coding genes (93.4% of the total genes), 95 RNA genes and 43.97% GC content. Based on 16S rRNA gene sequence analysis followed by in silico DNA-DNA hybridization studies, both the strains were identified as Lactobacillus plantarum belonging to family Lactobacillaceae within the phylum Firmicutes. Both the strains were genomically identical, sharing 99.99% CDS that showed 112 SNPs. Both the strains also exhibited deconjugation activity for the bile salts while genome analysis revealed that the L. plantarum strains E2C2 and E2C5 also have the ability to produce vitamins, biotin, alpha- and beta- glucosidase suggesting potential probiotic activities of the isolates. The description presented here is based on the draft genomes of strains E2C2 and E2C5 which are submitted to GenBank under the accession numbers LSST00000000.1 and LTCD00000000.1, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...