Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Expert Syst Appl ; 194: 116559, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35095217

ABSTRACT

In this study, chaos game representation (CGR) is introduced for investigating the pattern of genome sequences. It is an image representation of the genome for the overall visualization of the sequence. The CGR representation is a mapping technique that assigns each sequence base into the respective position in the two-dimension plane to portray the DNA sequence. Importantly, CGR provides one to one mapping to nucleotides as well as sequence. A coordinate of the CGR plane can tell the corresponding base and its location in the original genome. Therefore, the whole nucleotide sequence (until the current nucleotide) can be restored from the one point of the CGR. In this study, CGR coupled with artificial neural network (ANN) is introduced as a new way to represent the genome and to classify intra-coronavirus sequences. A hierarchy clustering study is done to validate the approach and found to be more than 90% accurate while comparing the result with the phylogenetic tree of the corresponding genomes. Interestingly, the method makes the genome sequence significantly shorter (more than 99% compressed) saving the data space while preserving the genome features.

2.
Genomics ; 113(1 Pt 2): 778-784, 2021 01.
Article in English | MEDLINE | ID: mdl-33069829

ABSTRACT

The coronavirus pandemic became a major risk in global public health. The outbreak is caused by SARS-CoV-2, a member of the coronavirus family. Though the images of the virus are familiar to us, in the present study, an attempt is made to hear the coronavirus by translating its protein spike into audio sequences. The musical features such as pitch, timbre, volume and duration are mapped based on the coronavirus protein sequence. Three different viruses Influenza, Ebola and Coronavirus were studied and compared through their auditory virus sequences by implementing Haar wavelet transform. The sonification of the coronavirus benefits in understanding the protein structures by enhancing the hidden features. Further, it makes a clear difference in the representation of coronavirus compared with other viruses, which will help in various research works related to virus sequence. This evolves as a simplified and novel way of representing the conventional computational methods.


Subject(s)
Algorithms , COVID-19/virology , Genome, Viral , Music , SARS-CoV-2/classification , SARS-CoV-2/genetics , Wavelet Analysis , Amino Acid Sequence , Cluster Analysis , Coronavirus/classification , Coronavirus/genetics , Ebolavirus/classification , Ebolavirus/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/genetics , Orthomyxoviridae/classification , Orthomyxoviridae/genetics , Pandemics , RNA, Viral/genetics , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL