Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Infect Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657001

ABSTRACT

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter ACTT-1 clinical trial that randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 COVID-19 patients were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95%CI 1.40-2.71) for levels >245 pg/ml vs 1.04 (95%CI 0.76-1.42) for levels < 245 pg/ml. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy.

2.
Ann Intern Med ; 177(3): 343-352, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38408357

ABSTRACT

BACKGROUND: The ACTT risk profile, which was developed from ACTT-1 (Adaptive COVID-19 Treatment Trial-1), demonstrated that hospitalized patients with COVID-19 in the high-risk quartile (characterized by low absolute lymphocyte count [ALC], high absolute neutrophil count [ANC], and low platelet count at baseline) benefited most from treatment with the antiviral remdesivir. It is unknown which patient characteristics are associated with benefit from treatment with the immunomodulator baricitinib. OBJECTIVE: To apply the ACTT risk profile to the ACTT-2 cohort to investigate potential baricitinib-related treatment effects by risk quartile. DESIGN: Post hoc analysis of ACTT-2, a randomized, double-blind, placebo-controlled trial. (ClinicalTrials.gov: NCT04401579). SETTING: Sixty-seven trial sites in 8 countries. PARTICIPANTS: Adults hospitalized with COVID-19 (n = 999; 85% U.S. participants). INTERVENTION: Baricitinib+remdesivir versus placebo+remdesivir. MEASUREMENTS: Mortality, progression to invasive mechanical ventilation (IMV) or death, and recovery, all within 28 days; ALC, ANC, and platelet count trajectories. RESULTS: In the high-risk quartile, baricitinib+remdesivir was associated with reduced risk for death (hazard ratio [HR], 0.38 [95% CI, 0.16 to 0.86]; P = 0.020), decreased progression to IMV or death (HR, 0.57 [CI, 0.35 to 0.93]; P = 0.024), and improved recovery rate (HR, 1.53 [CI, 1.16 to 2.02]; P = 0.002) compared with placebo+remdesivir. After 5 days, participants receiving baricitinib+remdesivir had significantly larger increases in ALC and significantly larger decreases in ANC compared with control participants, with the largest effects observed in the high-risk quartile. LIMITATION: Secondary analysis of data collected before circulation of current SARS-CoV-2 variants. CONCLUSION: The ACTT risk profile identifies a subgroup of hospitalized patients who benefit most from baricitinib treatment and captures a patient phenotype of treatment response to an immunomodulator and an antiviral. Changes in ALC and ANC trajectory suggest a mechanism whereby an immunomodulator limits severe COVID-19. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
Azetidines , COVID-19 , Purines , Pyrazoles , Sulfonamides , Adult , Humans , Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Immunologic Factors , SARS-CoV-2 , Treatment Outcome , Double-Blind Method
3.
Transpl Infect Dis ; 26(2): e14241, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38269469

ABSTRACT

BACKGROUND: Bacterial prophylaxis with a fluoroquinolone (FQ) during autologous stem cell transplant (ASCT) is common, although not standardized among transplant centers. The addition of doxycycline (doxy) to FQ prophylaxis was previously linked to reduced neutropenic fever and bacteremia in multiple myeloma (MM) patients undergoing ASCT although several confounders were present. We compared the incidence of neutropenic fever and bacteremia between MM patients variably receiving prophylaxis with FQ alone and FQ-doxy during ASCT. METHODS: Systematic retrospective chart review of MM patients who underwent ASCT between January 2016 and December 2021. The primary objective was to determine the effect of bacterial prophylaxis on neutropenic fever and bacteremia within 30 days of ASCT. Multivariable logistic regression for neutropenic fever and univariate logistic regression for bacteremia accounted for differences in subject characteristics between groups. RESULTS: Among 341 subjects, 121 received FQ and 220 received FQ-doxy for prophylaxis. Neutropenic fever developed in 67 (55.4%) and 87 (39.5%) subjects in the FQ and FQ-doxy groups, respectively (p = .005). Bacteremia was infrequent, with 5 (4.1%) and 5 (2.3%) cases developing in the FQ and FQ-doxy groups, respectively (p = .337). Among Gram-negative bacteremia events, 7/7 Escherichia coli strains were FQ-resistant, and 5/7 were ceftriaxone-resistant. CONCLUSION: The FQ-doxy prophylaxis group had fewer cases of neutropenic fever than the FQ group, however, there was no significant difference in bacteremia. High rates of antibiotic resistance were observed. An updated randomized controlled trial investigating appropriate prophylaxis for ASCT in the context of current oncology standards and changing antimicrobial resistance rates is warranted.


Subject(s)
Bacteremia , Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , Doxycycline/therapeutic use , Anti-Bacterial Agents/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Multiple Myeloma/therapy , Retrospective Studies , Transplantation, Autologous/adverse effects , Antibiotic Prophylaxis , Bacteremia/epidemiology , Bacteremia/prevention & control , Bacteremia/microbiology
4.
J Am Med Dir Assoc ; 25(2): 290-295, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37944905

ABSTRACT

OBJECTIVE: Little is known about deployment of SARS-CoV-2-neutralizing monoclonal antibodies (mab) in skilled nursing facilities (SNFs), a high-risk population for COVID-19-related complications. We assessed the utilization of mabs in SNFs and identified facility characteristics associated with effective use. DESIGN: Retrospective cohort study assessing the correlation of SNF characteristics with increasing mab use. SETTING AND PARTICIPANTS: United States SNFs participating in Project ECHO (Extensions for Community Health Outcomes). METHODS: The primary outcome was percentage of total mabs per COVID-19 cases in SNFs. Facilities were divided into 3 groups based on the percentage of the administration of mabs per number of cases: 0%, >0% to 20%, >20%. Ordinal logistic regression was applied to assess whether facility characteristics-study group, state, location, type, size, rating at baseline, weekly average of residents vaccinated, weekly average of staff vaccinated, and total weeks short staffed-correlated with the primary outcome. A multivariable model was used to evaluate the independent effect of predictors. RESULTS: A total of 130 facilities were included. Between the weeks ending on May 30, 2021, and on May 29, 2022, mean mab use when accounting for the number of COVID-19 cases was 12.96% (±26.71%) and >50% of facilities administered 0 doses of mabs. Facility location was associated with mab use (P value .030), with micropolitan facilities having the highest percentage of facilities administering mabs (30.4% in >0% to 20%, and 39.1% in >20%, respectively). There was a nonsignificant trend toward increased mab use in facilities reporting fewer staffing shortages. When the multivariable ordinal logistic regression model was applied, location in a micropolitan vs metropolitan area was associated with higher odds [3.29 (1.30, 8.32), P value .012] of increasing percentage total mabs per cases. CONCLUSIONS AND IMPLICATIONS: COVID-19 mabs were underutilized in a high-risk population for COVID-19 hospitalization and death. Understanding the barriers to effective distribution is critical in shaping pandemic preparedness efforts for the future.


Subject(s)
COVID-19 , Skilled Nursing Facilities , Humans , United States/epidemiology , SARS-CoV-2 , COVID-19/epidemiology , Retrospective Studies , Hospitalization
5.
Open Forum Infect Dis ; 10(6): ofad290, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383244

ABSTRACT

Background: Clinical trials initiated during emerging infectious disease outbreaks must quickly enroll participants to identify treatments to reduce morbidity and mortality. This may be at odds with enrolling a representative study population, especially when the population affected is undefined. Methods: We evaluated the utility of the Centers for Disease Control and Prevention's COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), the COVID-19 Case Surveillance System (CCSS), and 2020 United States (US) Census data to determine demographic representation in the 4 stages of the Adaptive COVID-19 Treatment Trial (ACTT). We compared the cumulative proportion of participants by sex, race, ethnicity, and age enrolled at US ACTT sites, with respective 95% confidence intervals, to the reference data in forest plots. Results: US ACTT sites enrolled 3509 adults hospitalized with COVID-19. When compared with COVID-NET, ACTT enrolled a similar or higher proportion of Hispanic/Latino and White participants depending on the stage, and a similar proportion of African American participants in all stages. In contrast, ACTT enrolled a higher proportion of these groups when compared with US Census and CCSS. The proportion of participants aged ≥65 years was either similar or lower than COVID-NET and higher than CCSS and the US Census. The proportion of females enrolled in ACTT was lower than the proportion of females in the reference datasets. Conclusions: Although surveillance data of hospitalized cases may not be available early in an outbreak, they are a better comparator than US Census data and surveillance of all cases, which may not reflect the population affected and at higher risk of severe disease.

6.
Geriatr Nurs ; 51: 439-445, 2023.
Article in English | MEDLINE | ID: mdl-37167902

ABSTRACT

BACKGROUND: Nursing homes were ill-equipped for the pandemic; though facilities are required to have infection control staff, only 3% have taken a basic infection control course. Little is known about the implementation of effective practices outside of the acute care setting. We proposed an intervention utilizing Project ECHO, to connect Penn State University experts with nursing home staff and administrators to explore how infection control guidelines can be implemented effectively. METHODS: A stratified cluster randomized design was used to assign nursing homes to either AHRQ-funded COVID-19 ECHO or AHRQ-funded COVID-19 ECHO+. RESULTS: 136 nursing homes participated. There were no significant differences in COVID-19 infection rate, hospitalization, deaths, or influenza, between ECHO or ECHO+. DISCUSSION: The ECHO model has significant strengths when compared to traditional training, as it allows for remote learning delivered by a multidisciplinary team of experts and utilizes case discussions that match the context of nursing homes.


Subject(s)
COVID-19 , Humans , Pandemics , Nursing Homes , Skilled Nursing Facilities , Patient-Centered Care
7.
Open Forum Infect Dis ; 10(3): ofad105, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36949880

ABSTRACT

Background: Corticosteroids confer a survival benefit in individuals hospitalized with coronavirus disease 2019 (COVID-19) who require oxygen. This meta-analysis seeks to determine the duration of corticosteroids needed to optimize this mortality benefit. Methods: Electronic databases were searched to 9 March 2022, for studies reporting corticosteroid versus no corticosteroid treatment in hospitalized COVID-19 patients. We estimated the effect of corticosteroids on mortality by random-effects meta-analyses. Subgroup analyses and meta-analyses were conducted to assess the optimal duration of corticosteroid treatment while adjusting for the severity of disease, age, duration of symptoms, and proportion of control group given steroids. Results: We identified 27 eligible studies consisting of 13 404 hospitalized COVID-19 patients. Seven randomized controlled trials and 20 observational studies were included in the meta-analysis of mortality, which suggested a protective association with corticosteroid therapy (risk ratio [RR], 0.71 [95% confidence interval {CI}, .58-.87]). Pooled analysis of 18 studies showed the greatest survival benefit for a treatment duration up to 6 days (RR, 0.54 [95% CI, .39-.74]). Survival benefit was 0.65 (95% CI, .51-.83) up to 7 days, and no additional survival benefit was observed beyond 7 days of treatment (RR, 0.64 [95% CI, .44-.93]). The survival benefit was not confounded by severity of disease, age, duration of symptoms, or proportion of control group given steroids. Conclusions: In this meta-analysis, optimal duration of corticosteroid treatment for hospitalized COVID-19 patients was up to 6 days, with no additional survival benefit with >7 days of treatment.

8.
Ann Intern Med ; 175(12): 1716-1727, 2022 12.
Article in English | MEDLINE | ID: mdl-36442063

ABSTRACT

BACKGROUND: The COVID-19 standard of care (SOC) evolved rapidly during 2020 and 2021, but its cumulative effect over time is unclear. OBJECTIVE: To evaluate whether recovery and mortality improved as SOC evolved, using data from ACTT (Adaptive COVID-19 Treatment Trial). DESIGN: ACTT is a series of phase 3, randomized, double-blind, placebo-controlled trials that evaluated COVID-19 therapeutics from February 2020 through May 2021. ACTT-1 compared remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and ACTT-3, remdesivir plus SOC was the control group. This post hoc analysis compared recovery and mortality between these comparable sequential cohorts of patients who received remdesivir plus SOC, adjusting for baseline characteristics with propensity score weighting. The analysis was repeated for participants in ACTT-3 and ACTT-4 who received remdesivir plus dexamethasone plus SOC. Trends in SOC that could explain outcome improvements were analyzed. (ClinicalTrials.gov: NCT04280705 [ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and NCT04640168 [ACTT-4]). SETTING: 94 hospitals in 10 countries (86% U.S. participants). PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: SOC. MEASUREMENTS: 28-day mortality and recovery. RESULTS: Although outcomes were better in ACTT-2 than in ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90 [CI, 0.56 to 1.40]). Comparable patients were less likely to be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI, 0.53 to 0.97]), and hydroxychloroquine use decreased. Outcomes improved from ACTT-2 to ACTT-3 (HR for recovery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to 0.97]). Potential explanatory factors (SOC trends, case surges, and variant trends) were similar between ACTT-2 and ACTT-3, except for increased dexamethasone use (11% to 77%). Outcomes were similar in ACTT-3 and ACTT-4. Antibiotic use decreased gradually across all stages. LIMITATION: Unmeasured confounding. CONCLUSION: Changes in patient composition explained improved outcomes from ACTT-1 to ACTT-2 but not from ACTT-2 to ACTT-3, suggesting improved SOC. These results support excluding nonconcurrent controls from analysis of platform trials in rapidly changing therapeutic areas. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adult , Humans , Antiviral Agents/therapeutic use , Clinical Trials, Phase III as Topic , Dexamethasone , Double-Blind Method , Randomized Controlled Trials as Topic , Treatment Outcome
9.
Lancet Respir Med ; 10(9): 888-899, 2022 09.
Article in English | MEDLINE | ID: mdl-35617986

ABSTRACT

BACKGROUND: Baricitinib and dexamethasone have randomised trials supporting their use for the treatment of patients with COVID-19. We assessed the combination of baricitinib plus remdesivir versus dexamethasone plus remdesivir in preventing progression to mechanical ventilation or death in hospitalised patients with COVID-19. METHODS: In this randomised, double-blind, double placebo-controlled trial, patients were enrolled at 67 trial sites in the USA (60 sites), South Korea (two sites), Mexico (two sites), Singapore (two sites), and Japan (one site). Hospitalised adults (≥18 years) with COVID-19 who required supplemental oxygen administered by low-flow (≤15 L/min), high-flow (>15 L/min), or non-invasive mechanical ventilation modalities who met the study eligibility criteria (male or non-pregnant female adults ≥18 years old with laboratory-confirmed SARS-CoV-2 infection) were enrolled in the study. Patients were randomly assigned (1:1) to receive either baricitinib, remdesivir, and placebo, or dexamethasone, remdesivir, and placebo using a permuted block design. Randomisation was stratified by study site and baseline ordinal score at enrolment. All patients received remdesivir (≤10 days) and either baricitinib (or matching oral placebo) for a maximum of 14 days or dexamethasone (or matching intravenous placebo) for a maximum of 10 days. The primary outcome was the difference in mechanical ventilation-free survival by day 29 between the two treatment groups in the modified intention-to-treat population. Safety analyses were done in the as-treated population, comprising all participants who received one dose of the study drug. The trial is registered with ClinicalTrials.gov, NCT04640168. FINDINGS: Between Dec 1, 2020, and April 13, 2021, 1047 patients were assessed for eligibility. 1010 patients were enrolled and randomly assigned, 516 (51%) to baricitinib plus remdesivir plus placebo and 494 (49%) to dexamethasone plus remdesivir plus placebo. The mean age of the patients was 58·3 years (SD 14·0) and 590 (58%) of 1010 patients were male. 588 (58%) of 1010 patients were White, 188 (19%) were Black, 70 (7%) were Asian, and 18 (2%) were American Indian or Alaska Native. 347 (34%) of 1010 patients were Hispanic or Latino. Mechanical ventilation-free survival by day 29 was similar between the study groups (Kaplan-Meier estimates of 87·0% [95% CI 83·7 to 89·6] in the baricitinib plus remdesivir plus placebo group and 87·6% [84·2 to 90·3] in the dexamethasone plus remdesivir plus placebo group; risk difference 0·6 [95% CI -3·6 to 4·8]; p=0·91). The odds ratio for improved status in the dexamethasone plus remdesivir plus placebo group compared with the baricitinib plus remdesivir plus placebo group was 1·01 (95% CI 0·80 to 1·27). At least one adverse event occurred in 149 (30%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 179 (37%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·5% [1·6 to 13·3]; p=0·014). 21 (4%) of 503 patients in the baricitinib plus remdesivir plus placebo group had at least one treatment-related adverse event versus 49 (10%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 6·0% [2·8 to 9·3]; p=0·00041). Severe or life-threatening grade 3 or 4 adverse events occurred in 143 (28%) of 503 patients in the baricitinib plus remdesivir plus placebo group and 174 (36%) of 482 patients in the dexamethasone plus remdesivir plus placebo group (risk difference 7·7% [1·8 to 13·4]; p=0·012). INTERPRETATION: In hospitalised patients with COVID-19 requiring supplemental oxygen by low-flow, high-flow, or non-invasive ventilation, baricitinib plus remdesivir and dexamethasone plus remdesivir resulted in similar mechanical ventilation-free survival by day 29, but dexamethasone was associated with significantly more adverse events, treatment-related adverse events, and severe or life-threatening adverse events. A more individually tailored choice of immunomodulation now appears possible, where side-effect profile, ease of administration, cost, and patient comorbidities can all be considered. FUNDING: National Institute of Allergy and Infectious Diseases.


Subject(s)
COVID-19 Drug Treatment , Adolescent , Adult , Azetidines , Dexamethasone , Double-Blind Method , Female , Humans , Male , Middle Aged , Oxygen , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Treatment Outcome
10.
BMC Infect Dis ; 22(1): 439, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35525973

ABSTRACT

BACKGROUND: The temporal evolution of SARS-CoV-2 vaccine efficacy and effectiveness (VE) against infection, symptomatic, and severe COVID-19 is incompletely defined. The temporal evolution of VE could be dependent on age, vaccine types, variants of the virus, and geographic region. We aimed to conduct a systematic review and meta-analysis of the duration of VE against SARS-CoV-2 infection, symptomatic COVID-19 and severe COVID-19. METHODS: MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, the World Health Organization Global Literature on Coronavirus Disease, and CoronaCentral databases were searched and studies were selected. Independent reviewers selected randomized controlled trials and cohort studies with the outcome of interest. Independent reviewers extracted data, and assessed the risk of bias. Meta-analysis was performed with the DerSimonian-Laird random-effects model with Hartung-Knapp-Sidik-Jonkman variance correction. The GRADE (Grading of Recommendations, Assessment, Development and Evaluation) approach was used to assess certainty (quality) of the evidence. Primary outcomes included VE as a function of time against SARS-CoV-2 infection, symptomatic and severe COVID-19. RESULTS: Eighteen studies were included representing nearly 7 million individuals. VE against all SARS-CoV-2 infections declined from 83% in the first month after completion of the original vaccination series to 22% at 5 months or longer. Similarly, VE against symptomatic COVID-19 declined from 94% in the first month after vaccination to 64% by the fourth month. VE against severe COVID-19 for all ages was high overall, with the level being 90% (95% CI, 87-92%) at five months or longer after being fully vaccinated. VE against severe COVID-19 was lower in individuals ≥ 65 years and those who received Ad26.COV2.S. CONCLUSIONS: VE against SARS-CoV-2 infection and symptomatic COVID-19 waned over time but protection remained high against severe COVID-19. These data can be used to inform public health decisions around the need for booster vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , COVID-19/epidemiology , COVID-19/prevention & control , Child , Humans , SARS-CoV-2 , Vaccine Efficacy
11.
Clin Infect Dis ; 74(7): 1260-1264, 2022 04 09.
Article in English | MEDLINE | ID: mdl-34379740

ABSTRACT

This post hoc analysis of the Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) shows a treatment effect of remdesivir (RDV) on progression to invasive mechanical ventilation (IMV) or death. Additionally, we create a risk profile that better predicts progression than baseline oxygen requirement alone. The highest risk group derives the greatest treatment effect from RDV.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Clinical Trials as Topic , Humans , Respiration, Artificial , SARS-CoV-2
12.
Lancet Respir Med ; 9(12): 1365-1376, 2021 12.
Article in English | MEDLINE | ID: mdl-34672949

ABSTRACT

BACKGROUND: Functional impairment of interferon, a natural antiviral component of the immune system, is associated with the pathogenesis and severity of COVID-19. We aimed to compare the efficacy of interferon beta-1a in combination with remdesivir compared with remdesivir alone in hospitalised patients with COVID-19. METHODS: We did a double-blind, randomised, placebo-controlled trial at 63 hospitals across five countries (Japan, Mexico, Singapore, South Korea, and the USA). Eligible patients were hospitalised adults (aged ≥18 years) with SARS-CoV-2 infection, as confirmed by a positive RT-PCR test, and who met one of the following criteria suggestive of lower respiratory tract infection: the presence of radiographic infiltrates on imaging, a peripheral oxygen saturation on room air of 94% or less, or requiring supplemental oxygen. Patients were excluded if they had either an alanine aminotransferase or an aspartate aminotransferase concentration more than five times the upper limit of normal; had impaired renal function; were allergic to the study product; were pregnant or breast feeding; were already on mechanical ventilation; or were anticipating discharge from the hospital or transfer to another hospital within 72 h of enrolment. Patients were randomly assigned (1:1) to receive intravenous remdesivir as a 200 mg loading dose on day 1 followed by a 100 mg maintenance dose administered daily for up to 9 days and up to four doses of either 44 µg interferon beta-1a (interferon beta-1a group plus remdesivir group) or placebo (placebo plus remdesivir group) administered subcutaneously every other day. Randomisation was stratified by study site and disease severity at enrolment. Patients, investigators, and site staff were masked to interferon beta-1a and placebo treatment; remdesivir treatment was given to all patients without masking. The primary outcome was time to recovery, defined as the first day that a patient attained a category 1, 2, or 3 score on the eight-category ordinal scale within 28 days, assessed in the modified intention-to-treat population, defined as all randomised patients who were classified according to actual clinical severity. Safety was assessed in the as-treated population, defined as all patients who received at least one dose of the assigned treatment. This trial is registered with ClinicalTrials.gov, NCT04492475. FINDINGS: Between Aug 5, 2020, and Nov 11, 2020, 969 patients were enrolled and randomly assigned to the interferon beta-1a plus remdesivir group (n=487) or to the placebo plus remdesivir group (n=482). The mean duration of symptoms before enrolment was 8·7 days (SD 4·4) in the interferon beta-1a plus remdesivir group and 8·5 days (SD 4·3) days in the placebo plus remdesivir group. Patients in both groups had a time to recovery of 5 days (95% CI not estimable) (rate ratio of interferon beta-1a plus remdesivir group vs placebo plus remdesivir 0·99 [95% CI 0·87-1·13]; p=0·88). The Kaplan-Meier estimate of mortality at 28 days was 5% (95% CI 3-7%) in the interferon beta-1a plus remdesivir group and 3% (2-6%) in the placebo plus remdesivir group (hazard ratio 1·33 [95% CI 0·69-2·55]; p=0·39). Patients who did not require high-flow oxygen at baseline were more likely to have at least one related adverse event in the interferon beta-1a plus remdesivir group (33 [7%] of 442 patients) than in the placebo plus remdesivir group (15 [3%] of 435). In patients who required high-flow oxygen at baseline, 24 (69%) of 35 had an adverse event and 21 (60%) had a serious adverse event in the interferon beta-1a plus remdesivir group compared with 13 (39%) of 33 who had an adverse event and eight (24%) who had a serious adverse event in the placebo plus remdesivir group. INTERPRETATION: Interferon beta-1a plus remdesivir was not superior to remdesivir alone in hospitalised patients with COVID-19 pneumonia. Patients who required high-flow oxygen at baseline had worse outcomes after treatment with interferon beta-1a compared with those given placebo. FUNDING: The National Institute of Allergy and Infectious Diseases (USA).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Interferon beta-1a/therapeutic use , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/therapeutic use , Double-Blind Method , Female , Humans , Japan , Male , Mexico , Middle Aged , Oxygen , Oxygen Saturation , Republic of Korea , SARS-CoV-2 , Singapore , Treatment Outcome , United States
13.
JMIR Form Res ; 5(8): e28568, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34236995

ABSTRACT

BACKGROUND: The Pfizer-BioNTech COVID-19 vaccine uses a novel messenger RNA technology to elicit a protective immune response. Short-term physiologic responses to the vaccine have not been studied using wearable devices. OBJECTIVE: We aim to characterize physiologic changes in response to COVID-19 vaccination in a small cohort of participants using a wearable device (WHOOP Strap 3.0). This is a proof of concept for using consumer-grade wearable devices to monitor response to COVID-19 vaccines. METHODS: In this prospective observational study, physiologic data from 19 internal medicine residents at a single institution that received both doses of the Pfizer-BioNTech COVID-19 vaccine was collected using the WHOOP Strap 3.0. The primary outcomes were percent change from baseline in heart rate variability (HRV), resting heart rate (RHR), and respiratory rate (RR). Secondary outcomes were percent change from baseline in total, rapid eye movement, and deep sleep. Exploratory outcomes included local and systemic reactogenicity following each dose and prophylactic analgesic use. RESULTS: In 19 individuals (mean age 28.8, SD 2.2 years; n=10, 53% female), HRV was decreased on day 1 following administration of the first vaccine dose (mean -13.44%, SD 13.62%) and second vaccine dose (mean -9.25%, SD 22.6%). RHR and RR showed no change from baseline after either vaccine dose. Sleep duration was increased up to 4 days post vaccination, after an initial decrease on day 1. Increased sleep duration prior to vaccination was associated with a greater change in HRV. Local and systemic reactogenicity was more severe after dose two. CONCLUSIONS: This is the first observational study of the physiologic response to any of the novel COVID-19 vaccines as measured using wearable devices. Using this relatively small healthy cohort, we provide evidence that HRV decreases in response to both vaccine doses, with no significant changes in RHR or RR. Sleep duration initially decreased following each dose with a subsequent increase thereafter. Future studies with a larger sample size and comparison to other inflammatory and immune biomarkers such as antibody response will be needed to determine the true utility of this type of continuous wearable monitoring in regards to vaccine responses. Our data raises the possibility that increased sleep prior to vaccination may impact physiologic responses and may be a modifiable way to increase vaccine response. These results may inform future studies using wearables for monitoring vaccine responses. TRIAL REGISTRATION: ClinicalTrials.gov NCT04304703; https://www.clinicaltrials.gov/ct2/show/NCT04304703.

15.
Med ; 2(5): 493-497, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33899041

ABSTRACT

Therapeutics for hospitalized COVID-19 patients were identified through a robust research response with several lessons learned: clinical trial data should guide therapeutic use, results should not be extrapolated between disease stages, and robust studies should be designed to give clinically relevant data. These lessons should be applied to the outpatient research response.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
16.
N Engl J Med ; 384(9): 795-807, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33306283

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (Covid-19) is associated with dysregulated inflammation. The effects of combination treatment with baricitinib, a Janus kinase inhibitor, plus remdesivir are not known. METHODS: We conducted a double-blind, randomized, placebo-controlled trial evaluating baricitinib plus remdesivir in hospitalized adults with Covid-19. All the patients received remdesivir (≤10 days) and either baricitinib (≤14 days) or placebo (control). The primary outcome was the time to recovery. The key secondary outcome was clinical status at day 15. RESULTS: A total of 1033 patients underwent randomization (with 515 assigned to combination treatment and 518 to control). Patients receiving baricitinib had a median time to recovery of 7 days (95% confidence interval [CI], 6 to 8), as compared with 8 days (95% CI, 7 to 9) with control (rate ratio for recovery, 1.16; 95% CI, 1.01 to 1.32; P = 0.03), and a 30% higher odds of improvement in clinical status at day 15 (odds ratio, 1.3; 95% CI, 1.0 to 1.6). Patients receiving high-flow oxygen or noninvasive ventilation at enrollment had a time to recovery of 10 days with combination treatment and 18 days with control (rate ratio for recovery, 1.51; 95% CI, 1.10 to 2.08). The 28-day mortality was 5.1% in the combination group and 7.8% in the control group (hazard ratio for death, 0.65; 95% CI, 0.39 to 1.09). Serious adverse events were less frequent in the combination group than in the control group (16.0% vs. 21.0%; difference, -5.0 percentage points; 95% CI, -9.8 to -0.3; P = 0.03), as were new infections (5.9% vs. 11.2%; difference, -5.3 percentage points; 95% CI, -8.7 to -1.9; P = 0.003). CONCLUSIONS: Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation. The combination was associated with fewer serious adverse events. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04401579.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Azetidines/therapeutic use , COVID-19 Drug Treatment , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Azetidines/adverse effects , COVID-19/mortality , COVID-19/therapy , Double-Blind Method , Drug Therapy, Combination , Female , Hospital Mortality , Hospitalization , Humans , Janus Kinase Inhibitors/adverse effects , Janus Kinase Inhibitors/therapeutic use , Male , Middle Aged , Oxygen Inhalation Therapy , Purines/adverse effects , Pyrazoles/adverse effects , Respiration, Artificial , Sulfonamides/adverse effects , Treatment Outcome
18.
J Infect ; 80(2): 197-203, 2020 02.
Article in English | MEDLINE | ID: mdl-31863789

ABSTRACT

OBJECTIVES: In multiple countries, endovascular/disseminated Mycobacterium chimaera infections have occurred in post-cardiac surgery patients in association with contaminated, widely-distributed cardiac bypass heater-cooler devices. To contribute to long-term characterization of this recently recognized infection, we describe the clinical course of 28 patients with 3-7 years of follow-up for survivors. METHODS: Identified at five hospitals in the United States 2010-2016, post-cardiac surgery patients in the cohort had growth of Mycobacterium avium complex (MAC)/M. chimaera from a sterile site or surgical wound, or a clinically compatible febrile illness with granulomatous inflammation on biopsy. Case follow-up was conducted in May 2019. RESULTS: Of 28 patients, infection appeared to be localized to the sternum in four patients. Among 18 with endovascular/disseminated infection who received combination anti-mycobacterial treatment and had sufficient follow-up, 39% appeared to have controlled infection (>12 months), 56% died, and one patient is alive with relapsed bacteremia. While the number of patients is small and interpretation is limited, four (67%) of six patients who had cardiac prosthesis removal/replacement appeared to have controlled infection compared to three (25%) of 12 with retained cardiac prosthesis (p >0.14; Fisher's exact test). CONCLUSIONS: Given poor response to treatment and potential for delayed relapses, post-cardiac surgery M. chimaera infection warrants aggressive treatment and long-term monitoring.


Subject(s)
Cardiac Surgical Procedures , Mycobacterium Infections, Nontuberculous , Mycobacterium Infections , Cardiac Surgical Procedures/adverse effects , Chimera , Follow-Up Studies , Humans , Mycobacterium , Mycobacterium Infections/drug therapy , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium avium Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...