Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 88(8): 083702, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863709

ABSTRACT

We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 µm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 µm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

2.
Phys Rev Lett ; 119(9): 097402, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28949584

ABSTRACT

Aggregates of interacting molecules can exhibit electronically excited states that are coherently delocalized over many molecules. This can lead to a strong enhancement of the fluorescence decay rate which is referred to as superradiance (SR). To date, the temperature dependence of SR is described by a 1/T law. Using an epitaxial dye layer and a Frenkel-exciton based model we provide both experimental and theoretical evidence that significant deviations from the 1/T behavior can occur for brick-wall-type aggregates of finite size leading even to a maximum of the SR at finite temperature. This is due to the presence of low energy excitations of weak or zero transition strength. These findings are relevant for designing light-emitting molecular materials.

3.
J Chem Phys ; 139(4): 044302, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23901975

ABSTRACT

The width and asymmetry of the line shape of the optical transition of a sample of two dimensional (2D) molecular J-aggregates was found to be related to a finite-size effect. The 2D aggregates were domains of the ordered monolayer of the fluorescent dye molecule 3,4,9,10-perylenetetracarboxylic acid dianhydride on a KCl(100) surface. Fluorescence and fluorescence excitation (FLE) spectra were measured as a function of temperature. The system shows a pronounced superradiant emission which yields additional information on the number of coherently coupled molecules participating in the emission. From calculations of the spectra within the tight binding model we find that the finite size of the 2D ordered domains of about N = 7 × 7 molecules, in combination with a Poissonian domain-size distribution, explains the line profile. Line broadening mechanisms due to site disorder or thermal effects--although not excludable straightaway--are not needed to explain the observed FLE line profile. This yields insight into the important, but so far not well understood, relation between the line profile and the size of ordered molecular aggregates.

4.
J Chem Phys ; 138(6): 064703, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23425484

ABSTRACT

Small amounts of the model molecule perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) were vacuum deposited on epitaxial KCl films on Ag(100). The use of a low substrate temperature (20 K) during deposition hampered molecular diffusion resulting in isolated monomers on the surface. Fluorescence and fluorescence excitation spectroscopy performed on these monomers yielded highly resolved spectra with narrow lines corresponding to individual vibronic modes. This high resolution in our spectra is caused by a very small inhomogeneous broadening due to well-defined adsorption sites of the molecule on the substrate. Indeed, by polarization dependent fluorescence spectroscopy we show that the flat-lying molecules exhibit a preferred azimuthal orientation on the surface, the long molecular axis being oriented along the [011] or the equivalent [011] direction of the substrate. Furthermore, the high resolution in the spectra allowed a detailed analysis of the vibronic modes. The vibrational modes of the adsorbed molecule are very similar to those of the free PTCDA molecule, but due to the presence of the substrate additional low energy modes which are relevant for the full understanding of the spectra couple to the transition.

5.
Phys Chem Chem Phys ; 15(14): 4906-13, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23435674

ABSTRACT

We performed fluorescence (FL) and fluorescence excitation (FLE) spectroscopy on the model molecule perylene-3,4,9,10-tetracarboxyl acid dianhydride (PTCDA) for very low coverages (below 1% of a monolayer) on thin (100) oriented KCl films. Two different states of PTCDA molecules can be distinguished in the spectra: an initial state, which is observed directly after deposition of the molecules onto the cold sample at 20 K, and a final state, which is found after intensive optical excitation or thermal annealing of the sample. The spectrum of the final state is blue-shifted with respect to that of the initial state by 130 ± 15 cm(-1) and exhibits lines with significantly reduced widths. This can be explained by diffusion of molecules from initially populated terrace sites to energetically favoured step edge sites. Polarization dependent spectroscopy reveals the same azimuthal orientation of the molecules on both adsorption sites and leads to a model of the adsorption geometry of PTCDA at the KCl step sites. Our experiment demonstrates how optical spectroscopy can be used to investigate kinetic processes of fluorescent molecules on surfaces.


Subject(s)
Anhydrides/chemistry , Perylene/analogs & derivatives , Potassium Chloride/chemistry , Diffusion , Perylene/chemistry , Spectrometry, Fluorescence , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...