Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 33(10): 108434, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33242409

ABSTRACT

Deep space exploration will require real-time, minimally invasive monitoring of astronaut health to mitigate the potential health impairments caused by space radiation and microgravity. Genotoxic stress in humans can be monitored by quantifying the amount of DNA double-strand breaks (DSBs) in immune cells from a simple finger prick. In a cohort of 674 healthy donors, we show that the endogenous level of DSBs increases with age and with latent cytomegalovirus infection. To map the range of human responses to space radiation, we then study DSB induction and repair in immune cells from 319 healthy donors after the cells are exposed to galactic cosmic ray components and lymphocytes from 30 cancer patients after radiotherapy. Individuals with low baseline DSB have fewer clinical complications, enhanced DNA damage repair responses, and a functional dose-dependent cytokine response in healthy donor cells. This supports the use of DSB monitoring for health resilience in space.


Subject(s)
DNA Breaks, Double-Stranded , DNA Damage , DNA/radiation effects , Adult , Aged , DNA/genetics , DNA/metabolism , DNA Repair/radiation effects , Dose-Response Relationship, Radiation , Female , Histones/metabolism , Humans , Male , Middle Aged , Oxidative Stress/physiology , Prognosis , Radiation Tolerance , Space Flight , Weightlessness
2.
Sci Rep ; 9(1): 16422, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712654

ABSTRACT

Electronics waste production has been fueled by economic growth and the demand for faster, more efficient consumer electronics. The glass and metals in end-of-life electronics components can be reused or recycled; however, conventional extraction methods rely on energy-intensive processes that are inefficient when applied to recycling e-waste that contains mixed materials and small amounts of metals. To make e-waste recycling economically viable and competitive with obtaining raw materials, recovery methods that lower the cost of metal reclamation and minimize environmental impact need to be developed. Microbial surface adsorption can aid in metal recovery with lower costs and energy requirements than traditional metal-extraction approaches. We introduce a novel method for metal recovery by utilizing metal-binding peptides to functionalize fungal mycelia and enhance metal recovery from aqueous solutions such as those found in bioremediation or biomining processes. Using copper-binding as a proof-of-concept, we compared binding parameters between natural motifs and those derived in silico, and found comparable binding affinity and specificity for Cu. We then combined metal-binding peptides with chitin-binding domains to functionalize a mycelium-based filter to enhance metal recovery from a Cu-rich solution. This finding suggests that engineered peptides could be used to functionalize biological surfaces to recover metals of economic interest and allow for metal recovery from metal-rich effluent with a low environmental footprint, at ambient temperatures, and under circumneutral pH.

3.
Sci Rep ; 9(1): 6942, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061396

ABSTRACT

DNA is an attractive candidate for integration into nanoelectronics as a biological nanowire due to its linear geometry, definable base sequence, easy, inexpensive and non-toxic replication and self-assembling properties. Recently we discovered that by intercalating Ag+ in polycytosine-mismatch oligonucleotides, the resulting C-Ag+-C duplexes are able to conduct charge efficiently. To map the functionality and biostability of this system, we built and characterized internally-functionalized DNA nanowires through non-canonical, Ag+-mediated base pairing in duplexes containing cytosine-cytosine mismatches. We assessed the thermal and chemical stability of ion-coordinated duplexes in aqueous solutions and conclude that the C-Ag+-C bond forms DNA duplexes with replicable geometry, predictable thermodynamics, and tunable length. We demonstrated continuous ion chain formation in oligonucleotides of 11-50 nucleotides (nt), and enzyme ligation of mixed strands up to six times that length. This construction is feasible without detectable silver nanocluster contaminants. Functional gene parts for the synthesis of DNA- and RNA-based, C-Ag+-C duplexes in a cell-free system have been constructed in an Escherichia coli expression plasmid and added to the open-source BioBrick Registry, paving the way to realizing the promise of inexpensive industrial production. With appropriate design constraints, this conductive variant of DNA demonstrates promise for use in synthetic biological constructs as a dynamic nucleic acid component and contributes molecular electronic functionality to DNA that is not already found in nature. We propose a viable route to fabricating stable DNA nanowires in cell-free and synthetic biological systems for the production of self-assembling nanoelectronic architectures.


Subject(s)
DNA/chemistry , Ions/chemistry , Metals/chemistry , Nanotechnology , Nanowires/chemistry , Synthetic Biology , Algorithms , Models, Chemical , Molecular Structure , Nanotechnology/methods , Nucleic Acid Conformation , Silver/chemistry , Spectrum Analysis , Synthetic Biology/methods
4.
Photochem Photobiol ; 95(2): 618-626, 2019 03.
Article in English | MEDLINE | ID: mdl-30103257

ABSTRACT

Rational use of water is a major challenge for governments and global organizations, with easy and inexpensive interventions being sought by communities that are not supplied with drinking water. In this context, solar disinfection (SODIS) has shown great efficiency for water disinfection. To speed up the process and improve inactivation, we studied the effects of methylene blue (MB) as a photodynamic agent because of its ability to absorb visible light (red wavelength) and generate singlet oxygen as a reactive species, thereby inactivating bacteria and viruses present in water. In this study, samples of clean mineral water were artificially contaminated with Gram-positive (Staphylococcus epidermidis or Deinococcus radiodurans) or with Gram-negative strains (Escherichia coli or Salmonella typhimurium) and exposed to traditional SODIS or to MB-SODIS. A lethal synergistic effect was observed when cultures were illuminated in the presence of MB. The obtained results indicate that bacterial inactivation can be achieved in a much shorter time when using MB associated with SODIS treatment. Therefore, this technique was able to provide safe water for consumption through the inactivation of microorganisms in general, including pathogens and some strains resistant to the traditional SODIS procedure, thus allowing its use in areas usually less exposed to sunlight.

5.
Microbiome ; 5(1): 86, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28810907

ABSTRACT

While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.


Subject(s)
Bacteria/isolation & purification , Bacterial Physiological Phenomena , Ecosystem , Microbial Viability , Biomass , High-Throughput Nucleotide Sequencing , Humans , Metagenomics/methods , Microbial Consortia , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
7.
Microbiologyopen ; 4(4): 574-88, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26147800

ABSTRACT

The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes.


Subject(s)
Microbial Viability/radiation effects , Ultraviolet Rays , Yeasts/isolation & purification , Yeasts/radiation effects , Altitude , Chile , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Desert Climate , Molecular Sequence Data , Pigments, Biological/analysis , Sequence Analysis, DNA , Sodium Chloride/metabolism , Temperature , Yeasts/classification , Yeasts/physiology
8.
Proc Natl Acad Sci U S A ; 112(13): 3886-91, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775594

ABSTRACT

Exoplanet discovery has made remarkable progress, with the first rocky planets having been detected in the central star's liquid water habitable zone. The remote sensing techniques used to characterize such planets for potential habitability and life rely solely on our understanding of life on Earth. The vegetation red edge from terrestrial land plants is often used as a direct signature of life, but it occupies only a small niche in the environmental parameter space that binds life on present-day Earth and has been widespread for only about 460 My. To more fully exploit the diversity of the one example of life known, we measured the spectral characteristics of 137 microorganisms containing a range of pigments, including ones isolated from Earth's most extreme environments. Our database covers the visible and near-infrared to the short-wavelength infrared (0.35-2.5 µm) portions of the electromagnetic spectrum and is made freely available from biosignatures.astro.cornell.edu. Our results show how the reflectance properties are dominated by the absorption of light by pigments in the visible portion and by strong absorptions by the cellular water of hydration in the infrared (up to 2.5 µm) portion of the spectrum. Our spectral library provides a broader and more realistic guide based on Earth life for the search for surface features of extraterrestrial life. The library, when used as inputs for modeling disk-integrated spectra of exoplanets, in preparation for the next generation of space- and ground-based instruments, will increase the chances of detecting life.


Subject(s)
Exobiology/methods , Anabaena/physiology , Biodiversity , Chlorella/physiology , Earth, Planet , Extraterrestrial Environment , Halorubrum/physiology , Life , Light , Microscopy, Electron, Scanning , Planets , Spectrophotometry
9.
Astrobiology ; 11(10): 1034-40, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22165956

ABSTRACT

The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10(5) to 10(6) cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10(-5) Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10(-2), which was larger than that of D. radiodurans (1.13±0.23)×10(-2). The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10(-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150 J m(-2). For fluences larger than 150 J m(-2), there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350 J m(-2)), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions.


Subject(s)
Deinococcus/radiation effects , Haloferax volcanii/radiation effects , Ultraviolet Rays , Halobacteriaceae/radiation effects , Survival Analysis , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...