Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 99(3): 765-772, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33861470

ABSTRACT

In this study, the authors examined late atretic follicles in the ovaries of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758), at different times of the year using transmitted light and epifluorescence microscopy. Atresia (degeneration and resorption of developing ovarian follicles) is a natural process involved in fecundity downregulation in teleosts and is substantially enhanced in stressful conditions. Early (α and ß) atretic stages of yolked oocytes have a relatively short duration in seasonally reproducing species, whereas later (γ and δ) atretic follicles (LAF) persist for longer time in the ovary, serving as a sign of previous vitellogenic activity. LAF can thus be used as reliable markers of maturity during non-reproductive periods. Lipofuscin granules accumulate in the cytoplasm of LAF cells as a result of lysosomal digestion of oocyte components. Taking advantage of the well-known autofluorescent properties of lipofuscins, LAF may be identified in unstained histological sections under fluorescence microscopy using appropriate excitation and emission wavelengths. The authors explore in this study the applicability of fluorescence microscopy to provide a fast and effective method to assess late atresia in fishes. This method may be particularly useful to determine sexual maturity in individuals sampled long after the spawning season, where LAF are difficult to detect in standard histological sections. Furthermore, LAF autofluorescence provides a rapid way to quantify late atresia in fishes using image analysis.


Subject(s)
Follicular Atresia , Ovary , Animals , Female , Fishes , Ovarian Follicle , Tuna
2.
Gen Comp Endocrinol ; 279: 184-195, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30923006

ABSTRACT

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides. Functional and behavioral studies carried out in birds and mammals have demonstrated a clear inhibitory role of GnIH on GnRH and gonadotropin synthesis and secretion as well as on aggressive and sexual behavior. However, the effects of Gnih orthologues in reproduction remain controversial in fish with both stimulatory and inhibitory actions being reported. In this paper, we will review the main findings obtained in our laboratory on the Gnih system of the European sea bass, Dicentrarchus labrax. The sea bass gnih gene encodes two putative Gnih peptides (sbGnih1 and sbGnih2), and is expressed in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, rostral rhombencephalon, retina and testis. The immunohistochemical study performed using specific antibodies developed in our laboratory revealed Gnih-immunoreactive (ir) perikarya in the same central areas and Gnih-ir fibers that profusely innervated the brain and pituitary of sea bass. Moreover, in vivo studies revealed the inhibitory role of centrally- and peripherally-administered Gnih in the reproductive axis of male sea bass, by acting at the brain (on gnrh and kisspeptin expression), pituitary (on gnrh receptors and gonadotropin synthesis and release) and gonadal (on androgen secretion and gametogenesis) levels. Our results have revealed the existence of a functional Gnih system in sea bass, and have provided evidence of the differential actions of the two Gnih peptides on the reproductive axis of this species, the main inhibitory role in the brain and pituitary being exerted by the sbGnih2 peptide. Recent studies developed in our laboratory also suggest that Gnih might be involved in the transduction of photoperiod and temperature information to the reproductive axis, as well as in the modulation of daily and seasonal rhythmic processes in sea bass.


Subject(s)
Bass/metabolism , Gonadotropins/metabolism , Hypothalamic Hormones/metabolism , Animals , Hypothalamic Hormones/chemistry , Organ Specificity , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...