Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Kidney Int ; 105(4): 717-730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154557

ABSTRACT

Some patients diagnosed with benign IgA nephropathy (IgAN) develop a progressive clinical course, not predictable by known clinical or histopathological parameters. To assess if gene expression can differentiate between progressors and non-progressors with assumed benign IgAN, we tested microdissected glomeruli from archival kidney biopsy sections from adult patients with stable clinical remission (21 non-progressors) or from 15 patients that had undergone clinical progression within a 25-year time frame. Based on 1 240 differentially expressed genes from patients with suitable sequencing results, we identified eight IgAN progressor and nine non-progressor genes using a two-component classifier. These genes, including APOL5 and ZXDC, predicted disease progression with 88% accuracy, 75% sensitivity and 100% specificity on average 21.6 years before progressive disease was clinically documented. APOL lipoproteins are associated with inflammation, autophagy and kidney disease while ZXDC is a zinc-finger transcription factor modulating adaptive immunity. Ten genes from our transcriptomics data overlapped with an external genome wide association study dataset, although the gene set enrichment test was not statistically significant. We also identified 45 drug targets in the DrugBank database, including angiotensinogen, a target of sparsentan (dual antagonist of the endothelin type A receptor and the angiotensin II type 1 receptor) currently investigated for IgAN treatment. Two validation cohorts were used for substantiating key results, one by immunohistochemistry and the other by nCounter technology. Thus, glomerular mRNA sequencing from diagnostic kidney biopsies from patients with assumed benign IgAN can differentiate between future progressors and non-progressors at the time of diagnosis.


Subject(s)
Glomerulonephritis, IGA , Adult , Humans , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/genetics , Genome-Wide Association Study , Kidney Glomerulus/pathology , Gene Expression Profiling/methods , Gene Expression Regulation
2.
BMC Nephrol ; 23(1): 118, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35331167

ABSTRACT

BACKGROUND: IgA nephropathy (IgAN) is associated with a significant risk of progression to kidney failure. Tubular atrophy is an established important risk factor for progressive disease, but few studies have investigated tubulointerstitial molecular markers and mechanisms of progression in IgAN. METHODS: Based on data from the Norwegian Renal Registry, two groups were included: IgAN patients with (n = 9) or without (n = 18) progression to kidney failure during 10 years of follow-up. Tubulointerstitial tissue without discernible interstitial expansion or pronounced tubular alterations was microdissected, proteome was analysed using tandem mass spectrometry and relative protein abundances were compared between groups. RESULTS: Proteome analyses quantified 2562 proteins with at least 2 unique peptides. Of these, 150 proteins had significantly different abundance between progressive and non-progressive IgAN patients, 67 were more abundant and 83 less abundant. Periostin was the protein with the highest fold change between progressive and non-progressive IgAN (fold change 8.75, p < 0.05) and periostin staining was also stronger in patients with progressive vs non-progressive IgAN. Reactome pathway analyses showed that proteins related to inflammation were more abundant and proteins involved in mitochondrial translation were significantly less abundant in progressive vs non-progressive patients. CONCLUSIONS: Microdissection of tubulointerstitial tissue with only mild damage allowed for identification of proteome markers of early progressive IgAN. Periostin abundance showed promise as a novel and important risk marker of progression.


Subject(s)
Glomerulonephritis, IGA , Renal Insufficiency , Biomarkers , Disease Progression , Female , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/diagnosis , Humans , Male , Prognosis , Proteome , Proteomics , Renal Insufficiency/complications
3.
BMC Nephrol ; 20(1): 410, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31726998

ABSTRACT

BACKGROUND: IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. METHODS: In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). RESULTS: Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. CONCLUSION: IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN.


Subject(s)
Extracellular Matrix Proteins/analysis , Extracellular Matrix/chemistry , Glomerulonephritis, IGA , Kidney Glomerulus/chemistry , Proteomics/methods , Adult , Case-Control Studies , Cell Adhesion Molecules/analysis , Female , Glomerular Basement Membrane/chemistry , Glomerular Filtration Rate , Glomerulonephritis, IGA/physiopathology , Humans , Kidney/chemistry , Kidney Glomerulus/surgery , Laser Capture Microdissection , Male , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL