Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34237280

ABSTRACT

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Subject(s)
Chromosome Aberrations , Chromosome Disorders/diagnosis , Chromosome Mapping/methods , Cytogenetic Analysis/methods , DNA Copy Number Variations , Genome, Human , Microarray Analysis/methods , Chromosome Disorders/genetics , Humans , Karyotyping
2.
Am J Hum Genet ; 108(8): 1423-1435, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34237281

ABSTRACT

Somatic structural variants (SVs) are important drivers of cancer development and progression. In a diagnostic set-up, especially for hematological malignancies, the comprehensive analysis of all SVs in a given sample still requires a combination of cytogenetic techniques, including karyotyping, FISH, and CNV microarrays. We hypothesize that the combination of these classical approaches could be replaced by optical genome mapping (OGM). Samples from 52 individuals with a clinical diagnosis of a hematological malignancy, divided into simple (<5 aberrations, n = 36) and complex (≥5 aberrations, n = 16) cases, were processed for OGM, reaching on average: 283-fold genome coverage. OGM called a total of 918 high-confidence SVs per sample, of which, on average, 13 were rare and >100 kb. In addition, on average, 73 CNVs were called per sample, of which six were >5 Mb. For the 36 simple cases, all clinically reported aberrations were detected, including deletions, insertions, inversions, aneuploidies, and translocations. For the 16 complex cases, results were largely concordant between standard-of-care and OGM, but OGM often revealed higher complexity than previously recognized. Detailed technical comparison with standard-of-care tests showed high analytical validity of OGM, resulting in a sensitivity of 100% and a positive predictive value of >80%. Importantly, OGM resulted in a more complete assessment than any previous single test and most likely reported the most accurate underlying genomic architecture (e.g., for complex translocations, chromoanagenesis, and marker chromosomes). In conclusion, the excellent concordance of OGM with diagnostic standard assays demonstrates its potential to replace classical cytogenetic tests as well as to rapidly map novel leukemia drivers.


Subject(s)
Chromosome Aberrations , Chromosome Mapping/methods , Cytogenetic Analysis/methods , DNA Copy Number Variations , Genome, Human , Hematologic Neoplasms/diagnosis , Microarray Analysis/methods , Hematologic Neoplasms/genetics , Humans , Karyotyping
4.
Eur J Hum Genet ; 29(4): 637-648, 2021 04.
Article in English | MEDLINE | ID: mdl-33257779

ABSTRACT

Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation, including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we performed LRS around 15×-40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes and genomes. Systematic assessment of LRS coverage showed that ~35 Mb of the human reference genome was only accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35 Mb of the genome that was only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome variation.


Subject(s)
Genetic Testing/methods , Intellectual Disability/genetics , Sequence Analysis, DNA/methods , Humans , Intellectual Disability/diagnosis , Mutation , Pedigree , Polymorphism, Genetic
5.
Neuropharmacology ; 184: 108370, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33137342

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention and/or hyperactivity and impulsivity. ADHD is highly prevalent in childhood and often persists into adulthood. Both genetic variants and environmental factors play a role in the onset and persistence of ADHD, and epigenetic changes, such as DNA methylation are considered as a link for their interplay. To investigate this, we studied DNA methylation in 37 candidate genes by performing targeted bisulfite sequencing of DNA isolated from whole blood of N = 88 individuals diagnosed with adult ADHD and N = 91 unaffected individuals (mean age 34.2 years). Differentially methylated sites were assessed by generalized linear models testing ADHD status and ADHD symptoms, accounting for a methylation-based smoking score, age, sex, and blood cell count. DNA methylation of single sites within DRD4 and KLDR1 was associated with adult ADHD status, and multiple DNA methylation sites within TARBP1 were associated with ADHD symptoms in adulthood and childhood. Awaiting replication, findings of this pilot study point to TARBP1 as a new candidate gene for ADHD symptoms. Our work also stresses the need for research to further examine the effects of environmental factors, such as nicotine exposure, on epigenetic modifications associated with psychiatric traits.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , DNA Methylation/physiology , Genetic Association Studies/methods , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics , Adolescent , Adult , Attention Deficit Disorder with Hyperactivity/metabolism , Cohort Studies , Female , Humans , Male , Middle Aged , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , Young Adult
6.
Hum Mol Genet ; 29(12): 2022-2034, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32246154

ABSTRACT

Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Macular Degeneration/genetics , NAV1.8 Voltage-Gated Sodium Channel/genetics , Receptors, KIR2DL4/genetics , Aged , Aged, 80 and over , Exome/genetics , Humans , Macular Degeneration/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
7.
Mol Psychiatry ; 25(9): 2047-2057, 2020 09.
Article in English | MEDLINE | ID: mdl-30116028

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/genetics , Exome/genetics , Genetic Linkage/genetics , Genetic Predisposition to Disease/genetics , Humans , Pedigree , Exome Sequencing
8.
Transl Psychiatry ; 8(1): 284, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30563984

ABSTRACT

It is well-established that there is a strong genetic contribution to the aetiology of attention deficit hyperactivity disorder (ADHD). Here, we employed a hypothesis-free genome-wide association study (GWAS) design in a sample of 480 clinical childhood ADHD cases and 1208 controls to search for novel genetic risk loci for ADHD. DNA was genotyped using Illumina's Human Infinium PsychArray-24v1.2., and the data were subsequently imputed to the 1000 Genomes reference panel. Rigorous quality control and pruning of genotypes at both individual subject and single nucleotide polymorphism (SNP) levels was performed. Polygenic risk score (PGRS) analysis revealed that ADHD case-control status was explained by genetic risk for ADHD, but no other major psychiatric disorders. Logistic regression analysis was performed genome-wide to test the association between SNPs and ADHD case-control status. We observed a genome-wide significant association (p = 3.15E-08) between ADHD and rs6686722, mapped to the Tenascin R (TNR) gene. Members of this gene family are extracellular matrix glycoproteins that play a role in neural cell adhesion and neurite outgrowth. Suggestive evidence of associations with ADHD was observed for an additional 111 SNPs (⩽9.91E-05). Although intriguing, the association between DNA variation in the TNR gene and ADHD should be viewed as preliminary given the small sample size of this discovery dataset.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Risk Factors , Tenascin
9.
Transl Psychiatry ; 8(1): 207, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30287865

ABSTRACT

Intra-individual response time variability (IIRTV) is proposed as a viable endophenotype for many psychiatric disorders, particularly attention-deficit hyperactivity disorder (ADHD). Here we assessed whether IIRTV was associated with common DNA variation genome-wide and whether IIRTV mediated the relationship between any associated loci and self-reported ADHD symptoms. A final data set from 857 Australian young adults (489 females and 368 males; Mage = 22.14 years, SDage = 4.82 years) who completed five response time tasks and self-reported symptoms of ADHD using the Conners' Adult ADHD Rating Scale was used. Principal components analysis (PCA) on these response time measures (standard deviation of reaction times and the intra-individual coefficient of variation) produced two variability factors (labelled response selection and selective attention). To understand the genetic drivers of IIRTV we performed a genome-wide association analysis (GWAS) on these PCA-derived indices of IIRTV. For the selective attention variability factor, we identified one single-nucleotide polymorphism (SNP) attaining genome-wide significance; rs62182100 in the HDAC4 gene located on chromosome 2q37. A bootstrapping mediation analysis demonstrated that the selective attention variability factor mediated the relationship between rs62182100 and self-reported ADHD symptoms. Our findings provide the first evidence of a genome-wide significant SNP association with IIRTV and support the potential utility of IIRTV as a valid endophenotype for ADHD symptoms. However, limitations of this study suggest that these observations should be interpreted with caution until replication samples become available.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/psychology , Attention , Histone Deacetylases/genetics , Individuality , Reaction Time , Repressor Proteins/genetics , Adult , Endophenotypes , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Neuropsychological Tests , Polymorphism, Single Nucleotide , Psychomotor Performance , Young Adult
10.
Clin Genet ; 94(6): 569-574, 2018 12.
Article in English | MEDLINE | ID: mdl-30215852

ABSTRACT

It can be clinically challenging to distinguish dry age-related macular degeneration (AMD) from AMD-mimicking dystrophies, and sometimes misdiagnosis occurs. With upcoming therapies for dry AMD it is important to exclude patients with a different retinal disease from clinical trials. In this study we evaluated the occurrence of AMD-mimicking dystrophies in an AMD cohort. Whole-exome sequencing (WES) was performed in 218 patients with intermediate AMD or geographic atrophy secondary to AMD and 133 control individuals. WES data was analyzed for rare variants in 19 genes associated with autosomal dominant and recessive macular dystrophies mimicking AMD. In three (1.4%) of 218 cases we identified a pathogenic heterozygous variant (PRPH2 c.424C > T; p.R142W) causal for autosomal dominant central areolar choroidal dystrophy (CACD). Phenotypically, these patients all presented with geographic atrophy. In 12 (5.5%) of 218 cases we identified a heterozygous variant of unknown clinical significance, but predicted to be highly deleterious, in genes previously associated with autosomal dominant macular dystrophies. The distinction between AMD and AMD-mimicking dystrophies, such as CACD, can be challenging based on fundus examination alone. Genetic screening for genes associated with macular dystrophies, especially PRPH2, can be beneficial to help identify AMD-mimicking dystrophies.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Phenotype , Aged , Aged, 80 and over , Alleles , Amino Acid Substitution , Case-Control Studies , Female , Genes, Dominant , Genetic Association Studies/methods , Genetic Testing , Genotype , Geographic Atrophy/diagnosis , Geographic Atrophy/genetics , Humans , Male , Exome Sequencing
11.
JAMA Ophthalmol ; 136(8): 875-884, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29852030

ABSTRACT

Importance: Visual acuity (VA) outcomes differ considerably among patients with neovascular age-related macular degeneration (nAMD) treated with anti-vascular endothelial growth factor (VEGF) drugs. Identification of pharmacogenetic associations may help clinicians understand the mechanisms underlying this variability as well as pave the way for personalized treatment in nAMD. Objective: To identify genetic factors associated with variability in the response to anti-VEGF therapy for patients with nAMD. Design, Setting, and Participants: In this multicenter genome-wide association study, 678 patients with nAMD with genome-wide genotyping data were included in the discovery phase; 1380 additional patients with nAMD were genotyped for selected common variants in the replication phase. All participants received 3 monthly injections of bevacizumab or ranibizumab. Clinical data were evaluated for inclusion/exclusion criteria from October 2014 to October 2015, followed by data analysis from October 2015 to February 2016. For replication cohort genotyping, clinical data collection and analysis (including meta-analysis) was performed from March 2016 to April 2017. Main Outcomes and Measures: Change in VA after the loading dose of 3 monthly anti-VEGF injections compared with baseline. Results: Of the 2058 included patients, 1210 (58.8%) were women, and the mean (SD) age across all cohorts was 78 (7.4) years. Patients included in the discovery cohort and most of the patients in the replication cohorts were of European descent. The mean (SD) baseline VA was 51.3 (20.3) Early Treatment Diabetic Retinopathy Study (ETDRS) score letters, and the mean (SD) change in VA after the loading dose of 3 monthly injections was a gain of 5.1 (13.9) ETDRS score letters (ie, 1-line gain). Genome-wide single-variant analyses of common variants revealed 5 independent loci that reached a P value less than 10 × 10-5. After replication and meta-analysis of the lead variants, rs12138564 located in the CCT3 gene remained nominally associated with a better treatment outcome (ETDRS letter gain, 1.7; ß, 0.034; SE, 0.008; P = 1.38 × 10-5). Genome-wide gene-based optimal unified sequence kernel association test of rare variants showed genome-wide significant associations for the C10orf88 (P = 4.22 × 10-7) and UNC93B1 (P = 6.09 × 10-7) genes, in both cases leading to a worse treatment outcome. Patients carrying rare variants in the C10orf88 and UNC93B1 genes lost a mean (SD) VA of 30.6 (17.4) ETDRS score letters (ie, loss of 6.09 lines) and 26.5 (13.8) ETDRS score letters (ie, loss of 5.29 lines), respectively, after 3 months of anti-VEGF treatment. Conclusions and Relevance: We propose that there is a limited contribution of common genetic variants to variability in nAMD treatment response. Our results suggest that rare protein-altering variants in the C10orf88 and UNC93B1 genes are associated with a worse response to anti-VEGF therapy in patients with nAMD, but these results require further validation in other cohorts.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/genetics , Chromosomes, Human, Pair 10/genetics , Membrane Transport Proteins/genetics , Open Reading Frames/genetics , Polymorphism, Single Nucleotide , Wet Macular Degeneration/genetics , Aged , Bevacizumab/therapeutic use , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/physiopathology , Female , Genetic Variation , Genome-Wide Association Study , Genotyping Techniques , Humans , Intravitreal Injections , Male , Middle Aged , Pharmacogenetics , Ranibizumab/therapeutic use , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Visual Acuity/physiology , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/physiopathology
12.
Ophthalmology ; 125(9): 1433-1443, 2018 09.
Article in English | MEDLINE | ID: mdl-29706360

ABSTRACT

PURPOSE: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. DESIGN: Genome-wide case-control association study of WES data. PARTICIPANTS: One thousand one hundred twenty-five AMD patients and 1361 control participants. METHODS: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. MAIN OUTCOME MEASURES: Genetic variants associated with AMD. RESULTS: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10-5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. CONCLUSIONS: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD.


Subject(s)
Bruch Membrane/metabolism , Collagen Type VIII/genetics , DNA/genetics , Genome-Wide Association Study/methods , Macular Degeneration/genetics , Retina/pathology , Aged , Animals , Bruch Membrane/pathology , Collagen Type VIII/metabolism , Female , Genetic Testing , Humans , Immunohistochemistry , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Exome Sequencing
13.
Ophthalmology ; 125(7): 1064-1074, 2018 07.
Article in English | MEDLINE | ID: mdl-29398083

ABSTRACT

PURPOSE: To identify genetic variants associated with complement activation, which may help to select age-related macular degeneration (AMD) patients for complement-inhibiting therapies. DESIGN: Genome-wide association study (GWAS) followed by replication and meta-analysis. PARTICIPANTS: AMD patients and controls (n = 2245). METHODS: A GWAS on serum C3d-to-C3 ratio was performed in 1548 AMD patients and controls. For replication and meta-analysis, 697 additional individuals were genotyped. A model for complement activation including genetic and non-genetic factors was built, and the variance explained was estimated. Haplotype analysis was performed for 8 SNPs across the CFH/CFHR locus. Association with AMD was performed for the variants and haplotypes found to influence complement activation. MAIN OUTCOME MEASURES: Normalized C3d/C3 ratio as a measure of systemic complement activation. RESULTS: Complement activation was associated independently with rs3753396 located in CFH (Pdiscovery = 1.09 × 10-15; Pmeta = 3.66 × 10-21; ß = 0.141; standard error [SE] = 0.015) and rs6685931 located in CFHR4 (Pdiscovery = 8.18 × 10-7; Pmeta = 6.32 × 10-8; ß = 0.054; SE = 0.010). A model including age, AMD disease status, body mass index, triglycerides, rs3753396, rs6685931, and previously identified SNPs explained 18.7% of the variability in complement activation. Haplotype analysis revealed 3 haplotypes (H1-2 and H6 containing rs6685931 and H3 containing rs3753396) associated with complement activation. Haplotypes H3 and H6 conferred stronger effects on complement activation compared with the single variants (P = 2.53 × 10-14; ß = 0.183; SE = 0.024; and P = 4.28 × 10-4; ß = 0.144; SE = 0.041; respectively). Association analyses with AMD revealed that SNP rs6685931 and haplotype H1-2 containing rs6685931 were associated with a risk for AMD development, whereas SNP rs3753396 and haplotypes H3 and H6 were not. CONCLUSIONS: The SNP rs3753396 in CFH and SNP rs6685931 in CFHR4 are associated with systemic complement activation levels. The SNP rs6685931 in CFHR4 and its linked haplotype H1-2 also conferred a risk for AMD development, and therefore could be used to identify AMD patients who would benefit most from complement-inhibiting therapies.


Subject(s)
Apolipoproteins/genetics , Complement Activation/physiology , Macular Degeneration/blood , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Cholesterol, HDL/blood , Complement C3/metabolism , Complement C3d/metabolism , Complement Factor H/genetics , Female , Genome-Wide Association Study , Genotyping Techniques , Haplotypes , Humans , Male , Middle Aged , Triglycerides/blood
14.
JAMA Ophthalmol ; 135(1): 39-46, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27918759

ABSTRACT

IMPORTANCE: In age-related macular degeneration (AMD), rare variants in the complement system have been described, but their functional consequences remain largely unexplored. OBJECTIVES: To identify new rare variants in complement genes and determine the functional effect of identified variants on complement levels and complement regulation in serum samples from carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS: This study evaluated affected (n = 114) and unaffected (n = 60) members of 22 families with AMD and a case-control cohort consisting of 1831 unrelated patients with AMD and 1367 control individuals from the European Genetic Database from March 29, 2006, to April 26, 2013, in Nijmegen, the Netherlands, and Cologne, Germany. Exome sequencing data of families were filtered for rare variants in the complement factor H (CFH), complement factor I (CFI), complement C9 (C9), and complement C3 (C3) genes. The case-control cohort was genotyped with allele-specific assays. Serum samples were obtained from carriers of identified variants (n = 177) and age-matched noncarriers (n = 157). Serum concentrations of factor H (FH), factor I (FI), C9, and C3 were measured, and C3b degradation ability was determined. MAIN OUTCOMES AND MEASURES: Association of rare variants in the CFH, CFI, C9, and C3 genes with AMD, serum levels of corresponding proteins, and C3b degradation ability of CFH and CFI variant carriers. RESULTS: The 1831 unrelated patients with AMD had a mean (SD) age of 75.0 (9.4) years, and 60.5% were female. The 1367 unrelated control participants had a mean (SD) age of 70.4 (7.0), and 58.7% were female. All individuals were of European descent. Rare variants in CFH, CFI, C9, and C3 contributed to an increased risk of developing AMD (odds ratio, 2.04; 95% CI, 1.47-2.82; P < .001). CFI carriers had decreased median FI serum levels (18.2 µg/mL in Gly119Arg carriers and 16.2 µg/mL in Leu131Arg carriers vs 27.2 and 30.4 µg/mL in noncarrier cases and controls, respectively; both P < .001). Elevated C9 levels were observed in Pro167Ser carriers (10.7 µg/mL vs 6.6 and 6.1 µg/mL in noncarrier cases and controls, respectively; P < .001). The median FH serum levels were 299.4 µg/mL for CFH Arg175Gln and 266.3 µg/mL for CFH Ser193Leu carriers vs 302.4 and 283.0 µg/mL for noncarrier cases and controls, respectively. The median C3 serum levels were 943.2 µg/mL for C3 Arg161Trp and 946.7 µg/mL for C3 Lys155Gln carriers vs 874.0 and 946.7 µg/mL for noncarrier cases and controls, respectively. The FH and FI levels correlated with C3b degradation in noncarriers (R2 = 0.35 and R2 = 0.31, respectively; both P < .001). CONCLUSIONS AND RELEVANCE: Reduced serum levels were associated with C3b degradation in carriers of CFI but not CFH variants, suggesting that CFH variants affect functional activity of FH rather than serum levels. Carriers of CFH (Arg175Gln and Ser193Leu) and CFI (Gly119Arg and Leu131Arg) variants have an impaired ability to regulate complement activation and may benefit more from complement-inhibiting therapy than patients with AMD in general.


Subject(s)
Complement C3b/genetics , DNA/genetics , Macular Degeneration/genetics , Aged , Aged, 80 and over , Alleles , Complement C3b/metabolism , Exome , Female , Genotype , Germany/epidemiology , Humans , Macular Degeneration/epidemiology , Macular Degeneration/metabolism , Male , Middle Aged , Netherlands/epidemiology , Polymorphism, Single Nucleotide , Prevalence , Retrospective Studies
15.
Genome Res ; 26(8): 1091-100, 2016 08.
Article in English | MEDLINE | ID: mdl-27325116

ABSTRACT

Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in "arms races" with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich, physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive genome evolution in the fungal plant pathogen Verticillium dahliae We show that highly variable lineage-specific (LS) regions evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons. We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of pathogen virulence.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Genome, Fungal , Verticillium/genetics , Genomics , Plant Diseases/genetics , Plant Diseases/microbiology , Plants/microbiology , Verticillium/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...