Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
STAR Protoc ; 3(3): 101475, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35755125

ABSTRACT

EGFR cell surface density, stability, internalization, and recycling can be measured by cell surface ELISA (cs-ELISA). Performing this experiment on ice impedes receptor internalization; thus the physiological cell surface receptor levels can be measured by cs-ELISA. Cell surface EGFR levels are detected by measuring Amplex Red fluorescence intensity. Although cell surface receptor levels can be measured by flow cytometry, cs-ELISA does not include cell dissociation steps that might affect cell surface receptor levels. For complete details on the use and execution of this protocol, please refer to Kazan et al. (2019).


Subject(s)
ErbB Receptors , Receptors, Cell Surface , Cell Membrane/metabolism , Enzyme-Linked Immunosorbent Assay , ErbB Receptors/metabolism , Flow Cytometry , Receptors, Cell Surface/metabolism
2.
Oncogene ; 41(12): 1701-1717, 2022 03.
Article in English | MEDLINE | ID: mdl-35110681

ABSTRACT

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Triple Negative Breast Neoplasms , Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Immunoconjugates/adverse effects , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Transcription Factors , Triple Negative Breast Neoplasms/drug therapy
3.
Oncotarget ; 13: 173-181, 2022.
Article in English | MEDLINE | ID: mdl-35070081

ABSTRACT

The 7th Birt-Hogg-Dubé (BHD) International Symposium convened virtually in October 2021. The meeting attracted more than 200 participants internationally and highlighted recent findings in a variety of areas, including genetic insight and molecular understanding of BHD syndrome, structure and function of the tumor suppressor Folliculin (FLCN), therapeutic and clinical advances as well as patients' experiences living with this malady.


Subject(s)
Birt-Hogg-Dube Syndrome , Birt-Hogg-Dube Syndrome/genetics , Humans
4.
iScience ; 24(11): 103274, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34761192

ABSTRACT

Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.

5.
J Clin Invest ; 131(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34779410

ABSTRACT

Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Breast Neoplasms/pathology , Neovascularization, Pathologic/prevention & control , Proto-Oncogene Proteins/physiology , Tumor Suppressor Proteins/physiology , Warburg Effect, Oncologic , AMP-Activated Protein Kinases/physiology , Cell Line, Tumor , Female , Humans , Oxidative Phosphorylation
6.
Sci Rep ; 11(1): 21268, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711912

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), which is characterized by triglyceride accumulation, inflammation, and fibrosis. No pharmacological agents are currently approved to treat these conditions, but it is clear now that modulation of lipid synthesis and autophagy are key biological mechanisms that could help reduce or prevent these liver diseases. The folliculin (FLCN) protein has been recently identified as a central regulatory node governing whole body energy homeostasis, and we hypothesized that FLCN regulates highly metabolic tissues like the liver. We thus generated a liver specific Flcn knockout mouse model to study its role in liver disease progression. Using the methionine- and choline-deficient diet to mimic liver fibrosis, we demonstrate that loss of Flcn reduced triglyceride accumulation, fibrosis, and inflammation in mice. In this aggressive liver disease setting, loss of Flcn led to activation of transcription factors TFEB and TFE3 to promote autophagy, promoting the degradation of intracellular lipid stores, ultimately resulting in reduced hepatocellular damage and inflammation. Hence, the activity of FLCN could be a promising target for small molecule drugs to treat liver fibrosis by specifically activating autophagy. Collectively, these results show an unexpected role for Flcn in fatty liver disease progression and highlight new potential treatment strategies.


Subject(s)
Autophagy/genetics , Hepatitis/etiology , Hepatitis/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Proto-Oncogene Proteins/deficiency , Signal Transduction , Tumor Suppressor Proteins/deficiency , Animals , Biomarkers , Biopsy , Computational Biology , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Genetic Predisposition to Disease , Hepatitis/pathology , Immunohistochemistry , Liver Cirrhosis/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Transcriptome
7.
Front Cell Dev Biol ; 9: 667311, 2021.
Article in English | MEDLINE | ID: mdl-33981707

ABSTRACT

Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/ß, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/ß. Other pathways and cellular processes regulated by FLCN will be briefly discussed.

8.
Autophagy ; 17(12): 3957-3975, 2021 12.
Article in English | MEDLINE | ID: mdl-33734022

ABSTRACT

Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.Abbreviations: ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; AMPKi: AMPK inhibitor, SBI-0206965; CA: constitutively active; CARM1: coactivator-associated arginine methyltransferase 1; CFP: cyan fluorescent protein; CLEAR: coordinated lysosomal expression and regulation; DKO: double knock-out; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DQ-BSA: self-quenched BODIPY® dye conjugates of bovine serum albumin; EBSS: Earle's balanced salt solution; FLCN: folliculin; GFP: green fluorescent protein; GST: glutathione S-transferases; HD: Huntington disease; HTT: huntingtin; KO: knock-out; LAMP1: lysosomal associated membrane protein 1; MEF: mouse embryonic fibroblasts; MITF: melanocyte inducing transcription factor; MTORC1: MTOR complex 1; PolyQ: polyglutamine; RPS6: ribosomal protein S6; RT-qPCR: reverse transcription quantitative polymerase chain reaction; TCL: total cell lysates; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TKO: triple knock-out; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
AMP-Activated Protein Kinases , Autophagy , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fibroblasts/metabolism , Humans , Lysosomes/metabolism , Mice , Phosphorylation , Signal Transduction/genetics , Transcriptional Activation
9.
FEBS J ; 287(19): 4198-4220, 2020 10.
Article in English | MEDLINE | ID: mdl-32484316

ABSTRACT

Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.


Subject(s)
Phosphoric Monoester Hydrolases , Proteins/metabolism , Animals , Humans
10.
Sci Rep ; 9(1): 11945, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31420572

ABSTRACT

The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.


Subject(s)
Axons/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/metabolism , Ephrin-B2/genetics , Motor Neurons/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Receptor, EphB2/genetics , Animals , Axons/ultrastructure , Chick Embryo , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/ultrastructure , Ephrin-B2/metabolism , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Motor Neurons/ultrastructure , Primary Cell Culture , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Proteolysis , Receptor, EphB2/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/ultrastructure , src-Family Kinases/genetics , src-Family Kinases/metabolism
11.
Methods Mol Biol ; 1998: 93-103, 2019.
Article in English | MEDLINE | ID: mdl-31250296

ABSTRACT

The endosomal sorting complexes required for transport (ESCRT) comprise a major trafficking pathway for plasma membrane proteins and are fundamental for ubiquitin-dependent cargo endocytosis. Here, we describe a method for studying the effect of ESCRT complexes on endo-lysosomal membrane trafficking and their role in receptor integrin α5ß1 downregulation. Single cell fluorescence ratio image analysis (FRIA), using appropriate fluorescence probes, enables the measurement of dynamics of integrin α5ß1 containing vesicles and represents a live cell-based method for studying the role of ESCRTs.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Integrin alpha5beta1/metabolism , Intravital Microscopy/methods , Single-Cell Analysis/methods , Endosomal Sorting Complexes Required for Transport/chemistry , Fluorescent Dyes/chemistry , HeLa Cells , Humans , Image Processing, Computer-Assisted/methods , Integrin alpha5beta1/chemistry , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Lysosomes/chemistry , Lysosomes/metabolism , Molecular Imaging/methods , Molecular Probes/chemistry
12.
Cell Rep ; 26(13): 3613-3628.e6, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30917316

ABSTRACT

TFEB and TFE3 are transcriptional regulators of the innate immune response, but the mechanisms regulating their activation upon pathogen infection are poorly elucidated. Using C. elegans and mammalian models, we report that the master metabolic modulator 5'-AMP-activated protein kinase (AMPK) and its negative regulator Folliculin (FLCN) act upstream of TFEB/TFE3 in the innate immune response, independently of the mTORC1 signaling pathway. In nematodes, loss of FLCN or overexpression of AMPK confers pathogen resistance via activation of TFEB/TFE3-dependent antimicrobial genes, whereas ablation of total AMPK activity abolishes this phenotype. Similarly, in mammalian cells, loss of FLCN or pharmacological activation of AMPK induces TFEB/TFE3-dependent pro-inflammatory cytokine expression. Importantly, a rapid reduction in cellular ATP levels in murine macrophages is observed upon lipopolysaccharide (LPS) treatment accompanied by an acute AMPK activation and TFEB nuclear localization. These results uncover an ancient, highly conserved, and pharmacologically actionable mechanism coupling energy status with innate immunity.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Immunity, Innate , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Cell Line , Disease Resistance , Immunity, Innate/genetics , Male , Mice , Mice, Inbred C57BL
13.
Biochem Cell Biol ; 97(1): 68-72, 2019 02.
Article in English | MEDLINE | ID: mdl-29879361

ABSTRACT

Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.


Subject(s)
Endocytosis/physiology , Endosomal Sorting Complexes Required for Transport/metabolism , Neoplasms/physiopathology , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Receptors, Cell Surface/metabolism , Animals , Humans , Protein Transport , Structure-Activity Relationship
14.
Sci Rep ; 8(1): 8414, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849089

ABSTRACT

Cachexia is a deadly muscle wasting syndrome that arises under conditions linked to chronic inflammation, such as cancer. Cytokines, including interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and their downstream effectors such as Signal Transducer and Activator of Transcription 3 (STAT3), have been shown to play a prominent role in muscle wasting. Previously, we demonstrated that Pateamine A (PatA), a compound that targets eukaryotic initiation factor 4A (eIF4A), could prevent muscle wasting by modulating the translation of the inducible Nitric Oxide Synthase (iNOS) mRNA. Here we show that hippuristanol, a compound that impedes eIF4A in a manner distinct from PatA, similarly inhibits the iNOS/NO pathway and cytokine-induced muscle wasting. Furthermore, we show that hippuristanol perturbs the activation of the STAT3 pathway and expression of STAT3-gene targets such as IL-6. The decreased activation of STAT3, which resulted from a decrease in STAT3 protein expression, was due to the inhibition of STAT3 translation as there were no changes in STAT3 mRNA levels. These effects are likely dependent on the inhibition of eIF4A activity since we observed similar results using PatA. Our results identify the inhibition of eIF4A-responsive transcripts, such as STAT3, as a viable approach to alleviate cachexia.


Subject(s)
Cytokines/pharmacology , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Muscular Atrophy/metabolism , Muscular Atrophy/prevention & control , Nitric Oxide Synthase Type II/metabolism , STAT3 Transcription Factor/metabolism , Allosteric Regulation/drug effects , Animals , Cell Line , Epoxy Compounds/pharmacology , Interleukin-6/metabolism , Macrolides/pharmacology , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology , Sterols/pharmacology , Thiazoles/pharmacology
15.
EMBO Mol Med ; 10(7)2018 07.
Article in English | MEDLINE | ID: mdl-29844217

ABSTRACT

Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Cachexia/prevention & control , Metformin/therapeutic use , Protein Kinases/metabolism , Ribonucleotides/therapeutic use , AMP-Activated Protein Kinase Kinases , Aminoimidazole Carboxamide/therapeutic use , Animals , Cachexia/etiology , Cell Line , Enzyme Activation , Inflammation/complications , Interferon-gamma/antagonists & inhibitors , Male , Mice, Inbred BALB C , Mitochondria/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Neoplasms, Experimental/pathology , Nitric Oxide Synthase Type II/metabolism , Protein Kinases/drug effects , Shock, Septic/chemically induced , Shock, Septic/complications , Tumor Necrosis Factor-alpha/antagonists & inhibitors
16.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727621

ABSTRACT

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Subject(s)
Autophagy/physiology , Fasting/metabolism , Lipid Metabolism/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Autophagosomes/metabolism , Caenorhabditis elegans/metabolism , Cell Line , Fibroblasts/metabolism , HEK293 Cells , Humans , Liver/metabolism , Mice , Phosphatidylinositol Phosphates/metabolism , Signal Transduction/physiology
17.
EMBO Rep ; 19(5)2018 05.
Article in English | MEDLINE | ID: mdl-29592859

ABSTRACT

Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells. We show that constitutive exposure to stress induces the formation of stress granules (SGs) in proliferative and presenescent cells, but not in fully senescent cells. Stress granule assembly alone is sufficient to decrease the number of senescent cells without affecting the expression of bona fide senescence markers. SG-mediated inhibition of senescence is associated with the recruitment of the plasminogen activator inhibitor-1 (PAI-1), a known promoter of senescence, to these entities. PAI-1 localization to SGs increases the translocation of cyclin D1 to the nucleus, promotes RB phosphorylation, and maintains a proliferative, non-senescent state. Together, our data indicate that SGs may be targets of intervention to modulate senescence in order to impair or prevent its deleterious effects.


Subject(s)
Cellular Senescence , Cytoplasmic Granules/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Stress, Physiological , Cell Line , Cell Nucleus/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Humans , Phosphorylation , Plasminogen Activator Inhibitor 1/genetics
18.
Methods Mol Biol ; 1732: 57-67, 2018.
Article in English | MEDLINE | ID: mdl-29480468

ABSTRACT

Glycogen is a main carbohydrate energy storage primarily found in fungi and animals. It is a glucose polymer that comprises α(1-4) glycosidic linkages attaching UDP-glucose molecules linearly and α(1-6) linkages branching glucose chains every 8-10 molecules to the main backbone chain. Glycogen synthase, branching enzyme, and glycogen phosphorylase are key enzymes involved in glycogen synthesis and degradation. These enzymes are tightly regulated by upstream kinases and phosphatases that respond to hormonal cues in order to coordinate storage and degradation and meet the cellular and organismal metabolic needs. The 5'AMP-activated protein kinase (AMPK) is one of the main regulators of glycogen metabolism. Despite extensive research, the role of AMPK in glycogen synthesis and degradation remains controversial. Specifically, the level and duration of AMPK activity highly influence the outcome on glycogen reserves. Here, we describe a rapid and robust protocol to efficiently measure the levels of glycogen in vitro. We use the commercially available glycogen determination kit to hydrolyze glycogen into glucose, which is oxidized to form D-gluconic acid and hydrogen peroxide that react with the OxiRed/Amplex Red probe generating a product that could be detected either in a colorimetric or fluorimetric plate format. This method is quantitative and could be used to address the role of AMPK in glycogen metabolism in cells and tissues. Summary This chapter provides a quick and reliable biochemical quantitative method to measure glycogen in cells and tissues. Briefly, this method is based on the degradation of glycogen to glucose, which is then specifically oxidized to generate a product that reacts with the OxiRed probe with maximum absorbance at 570 nm. This method is very accurate and highly sensitive. In the notes of this chapter, we shed the light on important actions that should be followed to get reliable results. We also state advantages and disadvantages of this method in comparison to other glycogen measurement techniques.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Fluorometry/methods , Glucose/metabolism , Glycogen/analysis , Animals , Cell Line, Tumor , Colorimetry/instrumentation , Colorimetry/methods , Fluorometry/instrumentation , Glucose/chemistry , Glycogen/metabolism , Humans , Hydrolysis , Liver/metabolism , Mice , Muscle, Skeletal/metabolism , Oxazines/chemistry , Oxidation-Reduction , Phosphorylation , Reproducibility of Results , Sensitivity and Specificity
19.
Cancers (Basel) ; 10(1)2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29329237

ABSTRACT

TOR (target of rapamycin), an evolutionarily-conserved serine/threonine kinase, acts as a central regulator of cell growth, proliferation and survival in response to nutritional status, growth factor, and stress signals. It plays a crucial role in coordinating the balance between cell growth and cell death, depending on cellular conditions and needs. As such, TOR has been identified as a key modulator of autophagy for more than a decade, and several deregulations of this pathway have been implicated in a variety of pathological disorders, including cancer. At the molecular level, autophagy regulates several survival or death signaling pathways that may decide the fate of cancer cells; however, the relationship between autophagy pathways and cancer are still nascent. In this review, we discuss the recent cellular signaling pathways regulated by TOR, their interconnections to autophagy, and the clinical implications of TOR inhibitors in cancer.

20.
Cell Rep ; 21(1): 1-9, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28978464

ABSTRACT

Reactive oxygen species (ROS) are continuously produced as a by-product of mitochondrial metabolism and eliminated via antioxidant systems. Regulation of mitochondrially produced ROS is required for proper cellular function, adaptation to metabolic stress, and bypassing cellular senescence. Here, we report non-canonical regulation of the cellular energy sensor AMP-activated protein kinase (AMPK) by mitochondrial ROS (mROS) that functions to maintain cellular metabolic homeostasis. We demonstrate that mitochondrial ROS are a physiological activator of AMPK and that AMPK activation triggers a PGC-1α-dependent antioxidant response that limits mitochondrial ROS production. Cells lacking AMPK activity display increased mitochondrial ROS levels and undergo premature senescence. Finally, we show that AMPK-PGC-1α-dependent control of mitochondrial ROS regulates HIF-1α stabilization and that mitochondrial ROS promote the Warburg effect in cells lacking AMPK signaling. These data highlight a key function for AMPK in sensing and resolving mitochondrial ROS for stress resistance and maintaining cellular metabolic balance.


Subject(s)
AMP-Activated Protein Kinases/genetics , Homeostasis/genetics , Metabolic Networks and Pathways/genetics , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Reactive Oxygen Species/metabolism , AMP-Activated Protein Kinases/deficiency , Animals , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Cellular Senescence/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Transgenic , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/deficiency , Primary Cell Culture , Protein Stability , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism , Uncoupling Protein 3/genetics , Uncoupling Protein 3/metabolism , Glutathione Peroxidase GPX1
SELECTION OF CITATIONS
SEARCH DETAIL
...