Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Curr Top Microbiol Immunol ; 440: 23-65, 2023.
Article in English | MEDLINE | ID: mdl-32418034

ABSTRACT

In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.


Subject(s)
Lassa Fever , Lassa virus , Animals , Humans , Lassa virus/genetics , Lassa Fever/epidemiology , Lassa Fever/genetics , Phylogeny , Africa, Western/epidemiology , Zoonoses , Mammals
2.
Nat Commun ; 13(1): 5596, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167835

ABSTRACT

Lassa fever is a severe viral hemorrhagic fever caused by a zoonotic virus that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate and land use changes could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence using ecological niche modelling, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation. Based on projections of climate, land use, and population changes, we find that regions in Central and East Africa will likely become suitable for Lassa virus over the next decades and estimate that the total population living in ecological conditions that are suitable for Lassa virus circulation may drastically increase by 2070. By analysing geotagged viral genomes using spatially-explicit phylogeography and simulating virus dispersal, we find that in the event of Lassa virus being introduced into a new suitable region, its spread might remain spatially limited over the first decades.


Subject(s)
Lassa Fever , Lassa virus , Animals , Humans , Lassa Fever/epidemiology , Lassa virus/genetics , Phylogeography , Risk Factors , Rodentia
3.
Immunity ; 54(4): 815-828.e5, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852832

ABSTRACT

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies. Survivors developed a range of functional antibody responses, and we therefore applied a rapid, high-throughput Fc engineering platform to define the most protective profiles. We generated a library of Fc variants with identical antigen-binding fragments (Fabs) from an EBOV neutralizing antibody. Fc variants with antibody-mediated complement deposition and moderate natural killer (NK) cell activity demonstrated complete protective activity in a stringent in vivo mouse model. Our findings highlight the importance of specific effector functions in antibody-mediated protection, and the experimental platform presents a generalizable resource for identifying correlates of immunity to guide therapeutic antibody design.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Female , HEK293 Cells , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/immunology , Mice, Inbred BALB C , Receptors, Fc/immunology
4.
Nat Med ; 27(4): 710-716, 2021 04.
Article in English | MEDLINE | ID: mdl-33846610

ABSTRACT

On 1 August 2018, the Democratic Republic of the Congo (DRC) declared its tenth Ebola virus disease (EVD) outbreak. To aid the epidemiologic response, the Institut National de Recherche Biomédicale (INRB) implemented an end-to-end genomic surveillance system, including sequencing, bioinformatic analysis and dissemination of genomic epidemiologic results to frontline public health workers. We report 744 new genomes sampled between 27 July 2018 and 27 April 2020 generated by this surveillance effort. Together with previously available sequence data (n = 48 genomes), these data represent almost 24% of all laboratory-confirmed Ebola virus (EBOV) infections in DRC in the period analyzed. We inferred spatiotemporal transmission dynamics from the genomic data as new sequences were generated, and disseminated the results to support epidemiologic response efforts. Here we provide an overview of how this genomic surveillance system functioned, present a full phylodynamic analysis of 792 Ebola genomes from the Nord Kivu outbreak and discuss how the genomic surveillance data informed response efforts and public health decision making.


Subject(s)
Disease Outbreaks , Ebolavirus/genetics , Genomics , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/genetics , Sequence Analysis, DNA , Congo/epidemiology , Ebola Vaccines/immunology , Genome, Viral , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Phylogeny , Recurrence , Reinfection/virology , Spatio-Temporal Analysis
5.
N Engl J Med ; 384(13): 1240-1247, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33789012

ABSTRACT

During the 2018-2020 Ebola virus disease (EVD) outbreak in North Kivu province in the Democratic Republic of Congo, EVD was diagnosed in a patient who had received the recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) (Merck). His treatment included an Ebola virus (EBOV)-specific monoclonal antibody (mAb114), and he recovered within 14 days. However, 6 months later, he presented again with severe EVD-like illness and EBOV viremia, and he died. We initiated epidemiologic and genomic investigations that showed that the patient had had a relapse of acute EVD that led to a transmission chain resulting in 91 cases across six health zones over 4 months. (Funded by the Bill and Melinda Gates Foundation and others.).


Subject(s)
Ebolavirus/genetics , Hemorrhagic Fever, Ebola/transmission , Adult , Bayes Theorem , Democratic Republic of the Congo/epidemiology , Ebola Vaccines/immunology , Ebolavirus/isolation & purification , Fatal Outcome , Genome, Viral , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/therapy , Humans , Male , Mutation , Phylogeny , RNA, Viral/blood , Recurrence
6.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-33028714

ABSTRACT

Given the complex biology of human immunodeficiency virus (HIV) and its remarkable capacity to evade host immune responses, HIV vaccine efficacy may benefit from the induction of both humoral and cellular immune responses of maximal breadth, potency, and longevity. Guided by this rationale, we set out to develop an immunization protocol aimed at maximizing the induction of anti-Envelope (anti-Env) antibodies and CD8+ T cells targeting non-Env epitopes in rhesus macaques (RMs). Our approach was to deliver the entire simian immunodeficiency virus (SIV) proteome by serial vaccinations. To that end, 12 RMs were vaccinated over 81 weeks with DNA, modified vaccinia Ankara (MVA), vesicular stomatitis virus (VSV), adenovirus type 5 (Ad5), rhesus monkey rhadinovirus (RRV), and DNA again. Both the RRV and the final DNA boosters delivered a near-full-length SIVmac239 genome capable of assembling noninfectious SIV particles and inducing T-cell responses against all nine SIV proteins. Compared to previous SIV vaccine trials, the present DNA-MVA-VSV-Ad5-RRV-DNA regimen resulted in comparable levels of Env-binding antibodies and SIV-specific CD8+ T-cells. Interestingly, one vaccinee developed low titers of neutralizing antibodies (NAbs) against SIVmac239, a tier 3 virus. Following repeated intrarectal marginal-dose challenges with SIVmac239, vaccinees were not protected from SIV acquisition but manifested partial control of viremia. Strikingly, the animal with the low-titer vaccine-induced anti-SIVmac239 NAb response acquired infection after the first SIVmac239 exposure. Collectively, these results highlight the difficulties in eliciting protective immunity against immunodeficiency virus infection.IMPORTANCE Our results are relevant to HIV vaccine development efforts because they suggest that increasing the number of booster immunizations or delivering additional viral antigens may not necessarily improve vaccine efficacy against immunodeficiency virus infection.


Subject(s)
Immunity , Proteome , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Antigens, Viral , CD8-Positive T-Lymphocytes/immunology , Humans , Immunization, Secondary , Macaca mulatta/immunology , Vaccination , Viral Load , Viremia
7.
Front Immunol ; 11: 1213, 2020.
Article in English | MEDLINE | ID: mdl-32612608

ABSTRACT

T follicular helper (TFH) cells are powerful regulators of affinity matured long-lived plasma cells. Eliciting protective, long-lasting antibody responses to achieve persistent immunity is the goal of most successful vaccines. Thus, there is potential in manipulating TFH cell responses. Herein, we describe an HIV vaccine development approach exploiting the cytokine activin A to improve antibody responses against recombinant HIV Envelope (Env) trimers in non-human primates. Administration of activin A improved the magnitude of Env-specific antibodies over time and promoted a significant increase in Env-specific plasma cells in the bone marrow. The boost in antibody responses was associated with reduced frequencies of T follicular regulatory (TFR) cells and increased germinal center T follicular helper (GC-TFH) to TFR cell ratios. Overall, these findings suggest that adjuvants inducing activin A production could potentially be incorporated in future rational design vaccine strategies aimed at improving germinal centers, long-lived plasma cells, and sustained antibody responses.


Subject(s)
Activins/immunology , Adjuvants, Immunologic , Antibody Formation/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Disease Models, Animal , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Humans , Immunization , Immunization Schedule , Immunophenotyping , Macaca mulatta , Male , Protein Multimerization/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry
8.
Curr Top Microbiol Immunol ; 428: 31-87, 2020.
Article in English | MEDLINE | ID: mdl-32648034

ABSTRACT

Development of vaccines to highly variable viruses such as Human Immunodeficiency Virus and influenza A viruses faces multiple challenges. In this article, these challenges are described and reverse vaccinology approaches to generate universal vaccines against both pathogens are laid out and compared.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , HIV/immunology , Influenza Vaccines/immunology , Orthomyxoviridae/immunology , Vaccinology , AIDS Vaccines/chemistry , HIV/chemistry , Humans , Influenza Vaccines/chemistry , Orthomyxoviridae/chemistry
9.
Mol Ther Methods Clin Dev ; 16: 225-237, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32083148

ABSTRACT

Structural characterization of the HIV-1 Envelope (Env) glycoprotein has facilitated the development of Env probes to isolate HIV-specific monoclonal antibodies (mAbs). However, preclinical studies have largely evaluated these virus-specific mAbs against chimeric viruses, which do not naturally infect non-human primates, in contrast to the unconstrained simian immunodeficiency virus (SIV)mac239 clone. Given the paucity of native-like reagents for the isolation of SIV-specific B cells, we examined a method to isolate SIVmac239-specific mAbs without using Env probes. We first activated virus-specific B cells by inducing viral replication after the infusion of a CD8ß-depleting mAb or withdrawal of antiretroviral therapy in SIVmac239-infected rhesus macaques. Following the rise in viremia, we observed 2- to 4-fold increases in the number of SIVmac239 Env-reactive plasmablasts in circulation. We then sorted these activated B cells and obtained 206 paired Ab sequences. After expressing 122 mAbs, we identified 14 Env-specific mAbs. While these Env-specific mAbs bound to both the SIVmac239 SOSIP.664 trimer and to infected primary rhesus CD4+ T cells, five also neutralized SIVmac316. Unfortunately, none of these mAbs neutralized SIVmac239. Our data show that this method can be used to isolate virus-specific mAbs without antigenic probes by inducing bursts of contemporary replicating viruses in vivo.

11.
Cell Host Microbe ; 26(3): 336-346.e3, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31513771

ABSTRACT

Passively administered broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have been shown to protect non-human primates (NHPs) against chimeric simian-human immunodeficiency virus (SHIV) infection. With data from multiple non-human primate SHIV challenge studies that used single bNAbs, we conducted a meta-analysis to examine the relationship between predicted serum 50% neutralization titer (ID50) against the challenge virus and infection outcome. In a logistic model that adjusts for bNAb epitopes and challenge viruses, serum ID50 had a highly significant effect on infection risk (p < 0.001). The estimated ID50 to achieve 50%, 75%, and 95% protection was 91 (95% confidence interval [CI]: 55, 153), 219 (117, 410), and 685 (319, 1471), respectively. This analysis indicates that serum neutralizing titer against the relevant virus is a key parameter of protection and that protection from acquisition by a single bNAb might require substantial levels of neutralization at the time of exposure.


Subject(s)
Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Immunization, Passive , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Epitopes/immunology , Female , HIV Infections/immunology , Inhibitory Concentration 50 , Logistic Models , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/virology , env Gene Products, Human Immunodeficiency Virus/immunology
12.
Cell ; 177(5): 1153-1171.e28, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31080066

ABSTRACT

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (TFH) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunization, Passive , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/pathology , Female , Germinal Center/pathology , Germinal Center/virology , Macaca mulatta , Male , T-Lymphocytes, Helper-Inducer/pathology , env Gene Products, Human Immunodeficiency Virus/immunology
13.
Immunity ; 50(1): 241-252.e6, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30552025

ABSTRACT

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV/physiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Neutralizing/immunology , Humans , Macaca mulatta , Vaccination
14.
J Virol ; 92(16)2018 08 15.
Article in English | MEDLINE | ID: mdl-29875239

ABSTRACT

Certain major histocompatibility complex class I (MHC-I) alleles are associated with spontaneous control of viral replication in human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs). These cases of "elite" control of HIV/SIV replication are often immune-mediated, thereby providing a framework for studying anti-lentiviral immunity. In this study, we examined how vaccination impacts SIV replication in RMs expressing the MHC-I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ and 50% of Mamu-B*08+ RMs control chronic-phase viremia after SIVmac239 infection. Because CD8+ T cells targeting Mamu-B*08-restricted SIV epitopes have been implicated in virologic suppression in Mamu-B*08+ RMs, we investigated whether this might also be true for Mamu-B*17+ RMs. Two groups of Mamu-B*17+ RMs were vaccinated with genes encoding Mamu-B*17-restricted epitopes in Vif and Nef. These genes were delivered by themselves (group 1) or together with env (group 2). Group 3 included MHC-I-matched RMs and served as the control group. Surprisingly, the group 1 vaccine regimen had little effect on viral replication compared to group 3, suggesting that unlike Mamu-B*08+ RMs, preexisting SIV-specific CD8+ T cells alone do not facilitate long-term virologic suppression in Mamu-B*17+ RMs. Remarkably, however, 5/8 group 2 vaccinees controlled viremia to <15 viral RNA copies/ml soon after infection. No serological neutralizing activity against SIVmac239 was detected in group 2, although vaccine-elicited gp140-binding antibodies correlated inversely with nadir viral loads. Collectively, these data shed new light on the unique mechanism of elite control in Mamu-B*17+ RMs and implicate vaccine-induced, nonneutralizing anti-Env antibodies in the containment of immunodeficiency virus infection.IMPORTANCE A better understanding of the immune correlates of protection against HIV might facilitate the development of a prophylactic vaccine. Therefore, we investigated simian immunodeficiency virus (SIV) infection outcomes in rhesus macaques expressing the major histocompatibility complex class I allele Mamu-B*17 Approximately 21% of Mamu-B*17+ macaques spontaneously controlled chronic phase viremia after SIV infection, an effect that may involve CD8+ T cells targeting Mamu-B*17-restricted SIV epitopes. We vaccinated Mamu-B*17+ macaques with genes encoding immunodominant epitopes in Vif and Nef alone (group 1) or together with env (group 2). Although neither vaccine regimen prevented SIV infection, 5/8 group 2 vaccinees controlled viremia to below detection limits shortly after infection. This outcome, which was not observed in group 1, was associated with vaccine-induced, nonneutralizing Env-binding antibodies. Together, these findings suggest a limited contribution of Vif- and Nef-specific CD8+ T cells for virologic control in Mamu-B*17+ macaques and implicate anti-Env antibodies in containment of SIV infection.


Subject(s)
Gene Products, env/immunology , Gene Products, nef/immunology , Gene Products, vif/immunology , Histocompatibility Antigens Class I/genetics , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Alleles , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Macaca mulatta , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Viral Load , Viremia/prevention & control , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...