Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1252374, 2023.
Article in English | MEDLINE | ID: mdl-37928528

ABSTRACT

Triple-negative breast cancer (TNBC) remains difficult to treat, especially due to ineffective immune responses. Current treatments mainly aim at a cytotoxic effect, whereas (stem) cell therapies are being investigated for their immune stimulatory capacities to initiate the anti-tumor immunity. Here, a thoroughly characterized, homogenous and non-tumorigenic mixture of equine mesenchymal stem cells (eMSCs) harvested from horse peripheral blood as innovative xenogeneic immunomodulators were tested in a 4T1-based intraductal mouse model for TNBC. The eMSCs significantly reduced 4T1 progression upon systemic injection, with induction of inflammatory mediators and T-cell influx in primary tumors, already after a single dose. These xenogeneic anti-cancer effects were not restricted to MSCs as systemic treatment with alternative equine epithelial stem cells (eEpSCs) mimicked the reported disease reduction. Mechanistically, effective eMSC treatment did not rely on the spleen as systemic entrapment site, whereas CD4+ and CD8α+ T-cell infiltration and activation were critical. These results show that eMSCs and potentially also other equine stem cell types can be a valuable TNBC treatment strategy for further (pre)clinical evaluation.


Subject(s)
Antineoplastic Agents , Mesenchymal Stem Cells , Triple Negative Breast Neoplasms , Humans , Mice , Horses , Animals , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Adaptive Immunity , Signal Transduction
2.
Arthritis Res Ther ; 25(1): 190, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37789403

ABSTRACT

BACKGROUND: As current therapies for canine osteoarthritis (OA) provide mainly symptomatic improvement and fail to address the complex pathology of the disease, mesenchymal stem cells (MSCs) offer a promising biological approach to address both aspects of OA through their immunomodulatory properties. METHODS: This study aimed to investigate the safety and efficacy of xenogeneic MSCs in dogs with OA at different dose levels after intravenous injection. OA was surgically induced in the right stifle joint. Thirty-two male and female dogs were divided into three treatment groups and a control group. Regular general physical examinations; lameness, joint, radiographic, and animal caretaker assessments; pressure plate analyses; and blood analyses were performed over 42 days. At study end, joint tissues were evaluated regarding gross pathology, histopathology, and immunohistochemistry. In a follow-up study, the biodistribution of intravenously injected 99mTc-labeled equine peripheral blood-derived MSCs was evaluated over 24h in three dogs after the cruciate ligament section. RESULTS: The dose determination study showed the systemic administration of ePB-MSCs in a canine OA model resulted in an analgesic, anti-inflammatory, and joint tissue protective effect associated with improved clinical signs and improved cartilage structure, as well as a good safety profile. Furthermore, a clear dose effect was found with 0.3 × 106 ePB-MSCs as the most effective dose. In addition, this treatment was demonstrated to home specifically towards the injury zone in a biodistribution study. CONCLUSION: This model-based study is the first to confirm the efficacy and safety of systemically administered xenogeneic MSCs in dogs with OA. The systemic administration of a low dose of xenogeneic MSCs could offer a widely accessible, safe, and efficacious treatment to address the complex pathology of canine OA and potentially slow down the disease progression by its joint tissue protective effect.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Animals , Male , Dogs , Female , Horses , Follow-Up Studies , Tissue Distribution , Injections, Intra-Articular , Osteoarthritis/pathology , Immunomodulation , Mesenchymal Stem Cell Transplantation/methods
3.
Stem Cells Dev ; 32(11-12): 292-300, 2023 06.
Article in English | MEDLINE | ID: mdl-36924281

ABSTRACT

Osteoarthritis is a frequently occurring joint disorder in veterinary practice. Current treatments are focused on pain and inflammation; however, these are not able to reverse the pathological condition. Mesenchymal stem cells (MSCs) could provide an interesting alternative because of their immunomodulatory properties. The objective of this study was to evaluate the potential of a single intravenous (IV) injection of xenogeneic equine peripheral blood-derived MSCs (epbMSCs) as treatment for articular pain and lameness. Patients with chronic articular pain were injected intravenously with epbMSCs. They were evaluated at three time points (baseline and two follow-ups) by a veterinarian based on an orthopedic joint assessment and an owner canine brief pain inventory scoring. Thirty-five dogs were included in the safety and efficacy evaluation of the study. Results showed that the epbMSC therapy was well tolerated, with no treatment-related adverse events and no increase in articular heat or pain. A significant improvement in lameness, range of motion, joint effusion, pain severity, and interference scores was found 6 weeks post-treatment compared with baseline. This study demonstrates that future research on IV administration of epbMSCs is warranted to further explore its possible beneficial effects in dogs with chronic articular pain and lameness. Clinical Trial gov ID: EC_2018_002.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Dogs , Feasibility Studies , Horses , Injections, Intra-Articular/adverse effects , Injections, Intra-Articular/veterinary , Injections, Intravenous , Lameness, Animal/therapy , Lameness, Animal/etiology , Mesenchymal Stem Cell Transplantation/adverse effects , Pain/complications , Pain/veterinary
4.
Front Vet Sci ; 9: 1035175, 2022.
Article in English | MEDLINE | ID: mdl-36504848

ABSTRACT

Osteoarthritis (OA) is a highly prevalent condition in dogs, causing a substantial reduction in quality of life and welfare of the animals. Current disease management focusses on pain relief but does not stop the progression of the disease. Therefore, mesenchymal stem cells (MSCs) could offer a promising disease modifying alternative. However, little is known about the behavior and the mode of action of MSCs following their administration. In the current case report, 99mTechnetium labelled xenogeneic equine peripheral blood-derived MSCs were intravenously injected in a 9 year old dog suffering from a natural occurring cranial cruciate ligament rupture. The biodistribution of the MSCs was evaluated during a 6-h follow-up period, using a full body scintigraphy imaging technique. No clinical abnormalities or ectopic tissue formations were detected throughout the study. A radiopharmaceutical uptake was present in the liver, heart, lung, spleen, kidneys and bladder of the dog. Furthermore, homing of the radiolabelled MSCs to the injured joint was observed, with 40.61 % higher uptake in the affected joint in comparison with the healthy contralateral joint. Finally, a local radioactive hotspot was seen at a part of the tail of the dog that had been injured recently. The current study is the first to confirm the homing of xenogeneic MSCs to a naturally occurring joint lesion after IV administration.

5.
Stem Cell Res Ther ; 12(1): 393, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256833

ABSTRACT

BACKGROUND: Mesenchymal stem cell treatments in dogs have been investigated as a potential innovative alternative to current conventional therapies for a variety of conditions. So far, the precise mode of action of the MSCs has yet to be determined. The aim of this study was to gain more insights into the pharmacokinetics of MSCs by evaluating their biodistribution in healthy dogs after different injection routes. METHODS: Three different studies were performed in healthy dogs to evaluate the biodistribution pattern of radiolabelled equine peripheral blood-derived mesenchymal stem cells following intravenous, intramuscular and subcutaneous administration in comparison with free 99mTechnetium. The labelling of the equine peripheral blood-derived mesenchymal stem cells was performed using stannous chloride as a reducing agent. Whole-body scans were obtained using a gamma camera during a 24-h follow-up. RESULTS: The labelling efficiency ranged between 59.58 and 83.82%. Free 99mTechnetium accumulation was predominantly observed in the stomach, thyroid, bladder and salivary glands, while following intravenous injection, the 99mTechnetium-labelled equine peripheral blood-derived mesenchymal stem cells majorly accumulated in the liver throughout the follow-up period. After intramuscular and subcutaneous injection, the injected dose percentage remained very high at the injection site. CONCLUSIONS: A distinct difference was noted in the biodistribution pattern of the radiolabelled equine peripheral blood-derived mesenchymal stem cells compared to free 99mTechnetium indicating equine peripheral blood-derived mesenchymal stem cells have a specific pharmacokinetic pattern after systemic administration in healthy dogs. Furthermore, the biodistribution pattern of the used xenogeneic equine peripheral blood-derived mesenchymal stem cells appeared to be different from previously reported experiments using different sources of mesenchymal stem cells.


Subject(s)
Mesenchymal Stem Cells , Animals , Dogs , Horses , Injections, Intravenous , Injections, Subcutaneous , Technetium , Tissue Distribution
6.
Front Vet Sci ; 8: 668881, 2021.
Article in English | MEDLINE | ID: mdl-34095280

ABSTRACT

Osteoarthritis (OA) is currently an incurable and progressive condition in dogs causing chronic joint pain and possibly increasing disability. Due to the poor healing capacity of cartilage lesions that occur with OA, development of effective therapeutics is difficult. For this reason, current OA therapy is mostly limited to the management of pain and inflammation, but not directed ad disease modification. In the search for a safe and effective OA treatment, mesenchymal stem cells (MSCs) have been of great interest since these cells might be able to restore cartilage defects. The designs of OA studies on MSC usage, however, are not always consistent and complete, which limits a clear evaluation of MSC efficacy. The general study results show a tendency to improve lameness, joint pain and range of motion in dogs suffering from naturally-occurring OA. Assessment of the cartilage surface demonstrated the ability of MSCs to promote cartilage-like tissue formation in artificially created cartilage defects. Immunomodulatory capacities of MSCs also seem to play an important role in reducing pain and inflammation in dogs. It should be mentioned, however, that in the current studies in literature there are specific design limitations and further research is warranted to confirm these findings.

7.
Vet Immunol Immunopathol ; 227: 110083, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32563854

ABSTRACT

OBJECTIVE: Due to the immunomodulatory properties of mesenchymal stem cells (MSCs) through stimulation of endogenous immune cells by paracrine signals and cell contact, they have been proposed as alternative treatment option for many inflammatory and immune-mediated diseases in veterinary medicine. However, the long-term cultivation possibilities of feline MSCs are currently compromised due to a restricted proliferation capacity. Therefore, the xenogeneic use of equine peripheral blood-derived MSCs (ePB-MSCs) would present an interesting alternative thanks to their superior cultivation properties. To the authors' knowledge, there are currently no safety reports concerning the xenogeneic use of ePB-MSCs in cats. Therefore, the overall goal of this preliminary study was to investigate if ePB-MSCs can safely be administered in healthy cats and by extension evaluating their immunogenic and immunomodulatory properties. METHODS: Ten healthy cats were intravenously (i.v.) injected with 3 × 105 ePB-MSCs at three time points (T0, T1, T2). All cats were daily inspected by the caretaker and underwent a physical examination with hematological and biochemical analysis at day 0 (T0), week 2 (T1), week 4 (T2) and week 6 (T3) by a veterinarian. Furthermore, a modified mixed lymphocyte reaction (MLR) was performed at T0 and T3 for each cat in order to evaluate immunogenic and immunomodulatory properties of the ePB-MSCs RESULTS: No adverse clinical effects could be detected following repeated i.v. administration of ePB-MSCs in all cats. Significant lower protein (T1: P-value = 0.002; T2: P-value > 0.001; T3: P-value = 0.004) and albumin levels (T1: P-value = 0.003; T2: P-value = 0.001) were seen after repeated administration of ePB-MSCs, compared to T0. However, all biochemical and hematological parameters stayed within clinical acceptance level. In addition, the repeated injections did not induce a cellular immune response before and after repeated ePB-MSCs administration. Furthermore, convincing immunomodulatory properties of ePB-MSCs on feline peripheral blood mononuclear cells were confirmed in the MLR-assay CONCLUSION: This preliminary study demonstrates that ePB-MSCs can safely be administered in healthy cats and provide a promising alternative for the treatment of various inflammatory diseases in cats.


Subject(s)
Immunomodulation , Mesenchymal Stem Cell Transplantation/veterinary , Mesenchymal Stem Cells/immunology , Administration, Intravenous , Animals , Cats , Cells, Cultured , Female , Horses , Leukocytes, Mononuclear/immunology , Lymphocyte Culture Test, Mixed , Male , Preliminary Data
8.
Nucl Med Biol ; 86-87: 20-29, 2020.
Article in English | MEDLINE | ID: mdl-32447069

ABSTRACT

INTRODUCTION: Glucose has been deemed the driving force of tumor growth for decades. However, research has shown that several tumors metabolically shift towards glutaminolysis. The development of radiolabeled glutamine derivatives could be a useful molecular imaging tool for visualizing these tumors. We elaborated on the glutamine-derived PET tracers by developing two novel probes, namely [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine. MATERIALS AND METHODS: Both tracers were labelled with fluorine-18 using our recently reported ruthenium-based direct aromatic fluorination method. Their affinity was evaluated with a [3H]glutamine inhibition experiment in a human PC-3 and a rat F98 cell line. The imaging potential of [18F]fluorophenylglutamine and [18F]fluorobiphenylglutamine was tested using a mouse PC-3 and a rat F98 tumor model. RESULTS: The radiosynthesis of both tracers was successful with overall non-decay corrected yields of 18.46 ± 4.18% (n = 10) ([18F]fluorophenylglutamine) and 8.05 ± 3.25% (n = 5) ([18F]fluorobiphenylglutamine). In vitro inhibition experiments showed a moderate and low affinity of fluorophenylglutamine and fluorobiphenylglutamine, respectively, towards the human ASCT-2 transporter. Both compounds had a low affinity towards the rat ASCT-2 transporter. These results were endorsed by the in vivo experiments with low uptake of both tracers in the F98 rat xenograft, low uptake of [18F]FBPG in the mice PC-3 xenograft and a moderate uptake of [18F]FPG in the PC-3 tumors. CONCLUSION: We investigated the imaging potential of two novel PET radiotracers [18F]FPG and [18F]FBPG. [18F]FPG is the first example of a glutamine radiotracer derivatized with a phenyl group which enables the exploration of further derivatization of the phenyl group to increase the affinity and imaging qualities. We hypothesize that increasing the affinity of [18F]FPG by optimizing the substituents of the arene ring can result in a high-quality glutamine-based PET radiotracer. Advances in Knowledge and Implications for patient care: We hereby report novel glutamine-based PET-tracers. These tracers are tagged on the arene group with fluorine-18, hereby preventing in vivo defluorination, which can occur with alkyl labelled tracers (e.g. (2S,4R)4-[18F]fluoroglutamine). [18F]FPG shows clear tumor uptake in vivo, has no in vivo defluorination and has a straightforward production. We believe this tracer is a good starting point for the development of a high-quality tracer which is useful for the clinical visualization of the glutamine transport.


Subject(s)
Glutamine/chemical synthesis , Positron-Emission Tomography , Animals , Cell Transformation, Neoplastic , Fluorine Radioisotopes/chemistry , Glutamine/chemistry , Glutamine/pharmacokinetics , Humans , Models, Molecular , Molecular Conformation , PC-3 Cells , Radioactive Tracers , Radiochemistry , Rats , Tissue Distribution
9.
J Labelled Comp Radiopharm ; 63(10): 442-455, 2020 08.
Article in English | MEDLINE | ID: mdl-32472945

ABSTRACT

The metabolic alterations in tumors make it possible to visualize the latter by means of positron emission tomography, enabling diagnosis and providing metabolic information. The alanine serine cysteine transporter-2 (ASCT-2) is the main transporter of glutamine and is upregulated in several tumors. Therefore, a good positron emission tracer targeting this transport protein would have substantial value. Hence, the aim of this study is to develop a fluorine-18-labeled version of a V-9302 analogue, one of the most potent inhibitors of ASCT-2. The precursor was labeled with fluorine-18 via a nucleophilic substitution of the corresponding benzylic bromide. The cold reference product was subjected to in vitro assays with [3 H]glutamine in a PC-3 and F98 cell line to determine the affinity for both the human and rat ASCT-2. To evaluate the tracer potential dynamic µPET, images were acquired in a mouse xenograft model for prostate cancer. The tracer could be synthesized with an overall nondecay corrected yield of 3.66 ± 1.90%. in vitro experiments show inhibitor constants Ki of 90 and 125 µM for the PC-3 and F98 cells, respectively. The experiments in the PC-3 xenograft demonstrate a low uptake in the tumor tissue. We have successfully synthesized the radiotracer [18 F]2-amino-4-((2-((3-fluorobenzyl)oxy)benzyl)(2-((3-(fluoromethyl)benzyl)oxy)benzyl)amino)butanoic acid. in vitro experiments show a good affinity for both the human and rat ASCT-2. However, the tracer suffers from poor in vivo tumor uptake in the PC-3 model. Briefly, we present the first fluorine-18-labeled derivative of compound V-9302, a promising novel ASCT-2 blocker used for inhibition of tumor growth.


Subject(s)
Butyric Acid/chemistry , Butyric Acid/chemical synthesis , Positron-Emission Tomography , Animals , Butyric Acid/pharmacology , Cell Line, Tumor , Male , Mice , Rats
10.
Nucl Med Biol ; 82-83: 9-16, 2020.
Article in English | MEDLINE | ID: mdl-31841816

ABSTRACT

INTRODUCTION: Considering the need for rapid change of treatment in recurrent glioblastoma (GB), it is of utmost importance to characterize PET radiopharmaceuticals that allow early discrimination of tumor from therapy-related effects. In this study, we examined the value of 2-[18F]FELP as a LAT1 tumor-specific PET tracer in comparison with [18F]FDG and [18F]FET in a combined orthotopic rat radiation necrosis and glioblastoma model. A second experiment compared 2-[18F]FELP to [18F]FDG in a mouse glioblastoma - inflammation model. METHODS: Using the small animal radiation research platform (SARRP), radiation necrosis (RN) was induced in the left frontal lobe of the rat brain. When radiation-induced changes were visible on MRI, F98 rat glioblastoma cells were stereotactically inoculated in the contralateral right frontal lobe. When tumor growth was confirmed on MRI, 2-[18F]FELP, [18F]FET and [18F]FDG PET scans were acquired on three consecutive days. In an inflammation experiment, mice were inoculated in the left thigh with U87 human glioblastoma cells. After heterotopic tumor growth was confirmed macroscopically, inflammation was induced by injection of turpentine subcutaneously in the right thigh. Subsequently, 2-[18F]FELP and [18F]FDG scans were acquired on two consecutive days. RESULTS: The in vivo PET images demonstrated that 2-[18F]FELP could differentiate glioblastoma and radiation necrosis using SUVmean (p = 0.0016) and LNRmean (p = 0.009), while [18F]FET was only able to differentiate both lesions by means of the SUVmean. (p = 0.047) Delayed [18F]FDGlate PET (4 h postinjection) was also able to distinguish glioblastoma from radiation necrosis, but smaller lesion-to-normal brain ratios were observed (SUVmean: p = 0.009; LNRmean: p = 0.028). In the inflammation study, 2-[18F]FELP showed no significant uptake in the inflammation lesion when compared to the control group (SUVmean: p = 0.149; LNRmean: p = 0.083). In contrast, both conventional and delayed [18F]FDG displayed significant uptake in the turpentine-invoked lesion (SUVmean: p = 0.021; LNRmean: p = 0.021). CONCLUSION: This study suggests that the 2-[18F]FELP PET is able to differentiate glioblastoma from radiation necrosis and that the 2-[18F]FELP uptake is less likely to be contaminated by the presence of inflammation than the [18F]FDG signal. ADVANCES IN KNOWLEDGE: These results are clinically relevant for the differential diagnosis between tumor and radiation necrosis because radiation necrosis always contains a certain amount of inflammatory cells. Hence, 2-[18F]FELP is preferred to discriminate tumor from radiation necrosis.


Subject(s)
Glioblastoma/diagnostic imaging , Large Neutral Amino Acid-Transporter 1/metabolism , Phenylalanine/analogs & derivatives , Positron-Emission Tomography/methods , Radiation Injuries/diagnostic imaging , Animals , Cell Line, Tumor , Diagnosis, Differential , Humans , Inflammation/diagnostic imaging , Mice , Necrosis/diagnostic imaging , Radioactive Tracers
11.
BMC Vet Res ; 15(1): 415, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31752848

ABSTRACT

BACKGROUND: Currently, [18F] altanserin is the most frequently used PET-radioligand for serotonin2A (5-HT2A) receptor imaging in the human brain but has never been validated in dogs. In vivo imaging of this receptor in the canine brain could improve diagnosis and therapy of several behavioural disorders in dogs. Furthermore, since dogs are considered as a valuable animal model for human psychiatric disorders, the ability to image this receptor in dogs could help to increase our understanding of the pathophysiology of these diseases. Therefore, five healthy laboratory beagles underwent a 90-min dynamic PET scan with arterial blood sampling after [18F] altanserin bolus injection. Compartmental modelling using metabolite corrected arterial input functions was compared with reference tissue modelling with the cerebellum as reference region. RESULTS: The distribution of [18F] altanserin in the canine brain corresponded well to the distribution of 5-HT2A receptors in human and rodent studies. The kinetics could be best described by a 2-Tissue compartment (2-TC) model. All reference tissue models were highly correlated with the 2-TC model, indicating compartmental modelling can be replaced by reference tissue models to avoid arterial blood sampling. CONCLUSIONS: This study demonstrates that [18F] altanserin PET is a reliable tool to visualize and quantify the 5-HT2A receptor in the canine brain.


Subject(s)
Brain/metabolism , Dogs/metabolism , Ketanserin/analogs & derivatives , Positron-Emission Tomography/veterinary , Serotonin Antagonists/pharmacokinetics , Animals , Female , Fluorine Radioisotopes , Ketanserin/administration & dosage , Ketanserin/pharmacokinetics , Models, Biological , Serotonin Antagonists/administration & dosage
12.
PLoS One ; 14(6): e0218237, 2019.
Article in English | MEDLINE | ID: mdl-31185062

ABSTRACT

Numerous studies have shown that the serotonin1A (5-HT1A) receptor is implicated in the pathophysiology and treatment of several psychiatric and neurological disorders. Furthermore, functional imaging studies in a variety of species have demonstrated that 4-(2´-Methoxyphenyl)-1-[2´-(N-2´´-pyridinyl)-p- [18F]fluorobenzamidoethylpiperazine ([18F]MPPF) is a valid and useful PET tracer to visualize the 5HT1A receptor. However, to our knowledge, [18F]MPPF has never been demonstrated in the canine brain. The ability to image the 5HT1A receptor with PET in dogs could improve diagnosis and therapy in both canine and human behavioural and neuropsychiatric disorders. To examine the potential use of [18F]MPPF in dogs, five healthy adult laboratory beagles underwent a 60-minutes dynamic PET scan with [18F]MPPF while arterial blood samples were taken. For each region of interest, total distribution volume (VT) and corresponding binding potential (BPND) were calculated using the 1-tissue compartment model (1-TC), 2-Tissue compartment model (2-TC) and Logan plot. The preferred model was chosen based on the goodness-of-fit, calculated with the Akaike information criterium (AIC). Subsequently, the BPND values of the preferred compartment model were compared with the estimated BPND values using three reference tissue models (RTMs): the 2-step simplified reference tissue model (SRTM2), the 2-parameter multilinear reference tissue model (MRTM2) and the Logan reference tissue model. According to the lower AIC values of the 2-TC model compared to the 1-TC in all ROIs, the 2-TC model showed a better fit. Calculating BPND using reference tissue modelling demonstrated high correlation with the BPND obtained by metabolite corrected plasma input 2-TC. This first-in-dog study indicates the results of a bolus injection with [18F]MPPF in dogs are consistent with the observations presented in the literature for other animal species and humans. Furthermore, for future experiments, compartmental modelling using invasive blood sampling could be replaced by RTMs, using the cerebellum as reference region.


Subject(s)
Brain , Fluorine Radioisotopes/pharmacology , Piperazines/pharmacology , Positron-Emission Tomography , Radiopharmaceuticals/pharmacology , Receptor, Serotonin, 5-HT1A/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Dogs
13.
J Neural Transm (Vienna) ; 125(9): 1381-1393, 2018 09.
Article in English | MEDLINE | ID: mdl-29955973

ABSTRACT

Preclinical research has been indispensable in the exploration of the neurological basis of major depressive disorder (MDD). The present study aimed to examine effects on regional brain activity of two frequently used depression models, the chronic unpredictable mild stress (CUMS)- and the chronic corticosterone (CORT) depression model. The CUMS and CORT depression model were induced by exposing male Long-Evans rats to a 4-week procedure of unpredictable mild stressors or a 3-week procedure of chronic corticosterone, respectively. Positron emission tomography with [18F]FDG was performed to determine alterations in regional brain activity. In addition, depressive- and anxiety-like behaviour was assessed via the forced swim test and the open field test, respectively. The chronic CORT administration, but not the CUMS model, significantly induced depressive-like behaviour and elevated plasma corticosterone levels. Compared to control, induction of the CORT depression model resulted in a significantly reduced glucose consumption in the insular cortex and the striatum, and a significantly elevated consumption in the cerebellum and the midbrain. Induction of the CUMS model replicated the findings with respect to the activity in the striatum region, and cerebellum, but missed significance in the insular cortex and the midbrain. Based on the alterations in behaviour and regional [18F]FDG uptake, a superior face validity and construct validity can be observed after induction of depression via chronic CORT injections, compared to the used CUMS paradigm.


Subject(s)
Anxiety/diagnostic imaging , Brain/diagnostic imaging , Depression/diagnostic imaging , Positron-Emission Tomography , Stress, Psychological , Animals , Anxiety/chemically induced , Anxiety/etiology , Brain/metabolism , Chronic Disease , Corticosterone/blood , Corticosterone/toxicity , Depression/chemically induced , Depression/etiology , Disease Models, Animal , Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Glucose/metabolism , Immobility Response, Tonic , Male , Motor Activity , Neuroimaging , Radiopharmaceuticals , Random Allocation , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL