Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Rep ; 13(1): 19779, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957271

ABSTRACT

Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: Chocó and Córdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. Chocó exhibited a higher frequency of polyclonal infections (23%) than Córdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria, Vivax , Humans , Plasmodium vivax/genetics , Antimalarials/pharmacology , Colombia/epidemiology , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Protozoan Proteins/genetics , Drug Resistance/genetics , Genomics
2.
Nat Commun ; 14(1): 7387, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968278

ABSTRACT

Plasmodium falciparum malaria drives immunoregulatory responses across multiple cell subsets, which protects from immunopathogenesis, but also hampers the development of effective anti-parasitic immunity. Understanding malaria induced tolerogenic responses in specific cell subsets may inform development of strategies to boost protective immunity during drug treatment and vaccination. Here, we analyse the immune landscape with single cell RNA sequencing during P. falciparum malaria. We identify cell type specific responses in sub-clustered major immune cell types. Malaria is associated with an increase in immunosuppressive monocytes, alongside NK and γδ T cells which up-regulate tolerogenic markers. IL-10-producing Tr1 CD4 T cells and IL-10-producing regulatory B cells are also induced. Type I interferon responses are identified across all cell types, suggesting Type I interferon signalling may be linked to induction of immunoregulatory networks during malaria. These findings provide insights into cell-specific and shared immunoregulatory changes during malaria and provide a data resource for further analysis.


Subject(s)
Interferon Type I , Malaria, Falciparum , Malaria , Humans , Interleukin-10/genetics , Transcriptome , Interferon Type I/genetics , Plasmodium falciparum/genetics , T-Lymphocyte Subsets
3.
Commun Biol ; 5(1): 1411, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564617

ABSTRACT

Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.


Subject(s)
Malaria, Vivax , Malaria , Humans , Malaria, Vivax/diagnosis , Malaria, Vivax/genetics , Likelihood Functions , Plasmodium vivax/genetics , Internet
5.
Malar J ; 20(1): 181, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33838672

ABSTRACT

BACKGROUND: Volunteer infection studies have become a standard model for evaluating drug efficacy against Plasmodium infections. Molecular techniques such as qPCR are used in these studies due to their ability to provide robust and accurate estimates of parasitaemia at increased sensitivity compared to microscopy. The validity and reliability of assays need to be ensured when used to evaluate the efficacy of candidate drugs in clinical trials. METHODS: A previously described 18S rRNA gene qPCR assay for quantifying Plasmodium falciparum in blood samples was evaluated. Assay performance characteristics including analytical sensitivity, reportable range, precision, accuracy and specificity were assessed using experimental data and data compiled from phase 1 volunteer infection studies conducted between 2013 and 2019. Guidelines for validation of laboratory-developed molecular assays were followed. RESULTS: The reportable range was 1.50 to 6.50 log10 parasites/mL with a limit of detection of 2.045 log10 parasites/mL of whole blood based on a parasite diluted standard series over this range. The assay was highly reproducible with minimal intra-assay (SD = 0.456 quantification cycle (Cq) units [0.137 log10 parasites/mL] over 21 replicates) and inter-assay (SD = 0.604 Cq units [0.182 log10 parasites/mL] over 786 qPCR runs) variability. Through an external quality assurance program, the QIMR assay was shown to generate accurate results (quantitative bias + 0.019 log10 parasites/mL against nominal values). Specificity was 100% after assessing 164 parasite-free human blood samples. CONCLUSIONS: The 18S rRNA gene qPCR assay is specific and highly reproducible and can provide reliable and accurate parasite quantification. The assay is considered fit for use in evaluating drug efficacy in malaria clinical trials.


Subject(s)
Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Adult , Humans , Hydrolysis , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis , Sensitivity and Specificity
6.
Malar J ; 20(1): 43, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33446191

ABSTRACT

BACKGROUND: In the absence of a method to culture Plasmodium vivax, the only way to source parasites is ex vivo. This hampers many aspects of P. vivax research. This study aimed to assess the safety of apheresis, a method for selective removal of specific components of blood as a means of extracting and concentrating P. vivax parasites. METHODS: An iterative approach was employed across four non-immune healthy human subjects in single subject cohorts. All four subjects were inoculated with ~ 564 blood stage P. vivax (HMP013-Pv) and subjected to apheresis 10 to 11 days later. Blood samples collected during apheresis (haematocrit layers 0.5% to 11%) were tested for the presence and concentration of P. vivax by microscopy, flow cytometry, 18S rDNA qPCR for total parasites, and pvs25 qRT-PCR for female gametocyte transcripts. Safety was determined by monitoring adverse events. Malaria transmission to mosquitoes was assessed by membrane feeding assays. RESULTS: There were no serious adverse events and no significant safety concerns. Apheresis concentrated asexual parasites by up to 4.9-fold (range: 0.9-4.9-fold) and gametocytes by up to 1.45-fold (range: 0.38-1.45-fold) compared to pre-apheresis densities. No single haematocrit layer contained > 40% of all the recovered P. vivax asexual parasites. Ex vivo concentration of parasites by Percoll gradient centrifugation of whole blood achieved greater concentration of gametocytes than apheresis. Mosquito transmission was enhanced by up to fivefold in a single apheresis sample compared to pre-apheresis. CONCLUSION: The modest level of parasite concentration suggests that the use of apheresis may not be an ideal method for harvesting P. vivax. Trial Registration Australia New Zealand Clinical Trials Registry (ANZCTR) Trial ID: ACTRN12617001502325 registered on 19th October 2017. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373812.


Subject(s)
Blood Component Removal/statistics & numerical data , Malaria, Vivax/parasitology , Parasitemia/parasitology , Plasmodium vivax/isolation & purification , Adult , Feasibility Studies , Female , Humans , Male , Middle Aged , Safety , Young Adult
7.
J Infect Dis ; 223(12): 2154-2163, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33119072

ABSTRACT

BACKGROUND: Artemisinin derivatives are the leading class of antimalarial drugs due to their rapid onset of action and rapid clearance of circulating parasites. The parasite clearance half-life measures the rate of loss of parasites from blood after treatment, and this is currently used to assess antimalarial activity of novel agents and to monitor resistance. However, a number of recent studies have challenged the use of parasite clearance to measure drug activity, arguing that many circulating parasites may be nonviable. METHODS: Plasmodium falciparum-infected subjects (n = 10) in a malaria volunteer infection study were administered a single dose of artesunate (2 mg/kg). Circulating parasite concentration was assessed by means of quantitative polymerase chain reaction (qPCR). Parasite viability after artesunate administration was estimated by mathematical modeling of the ex vivo growth of parasites collected from subjects. RESULTS: We showed that in artemisinin-sensitive infection, viable parasites declined to <0.1% of baseline within 8 hours after artesunate administration, while the total number of circulating parasites measured with quantitative polymerase chain reaction remained unchanged. In artemisinin-resistant infections over the same interval, viable parasites declined to 51.4% (standard error of the mean, 4.6%) of baseline. CONCLUSIONS: These results demonstrate that in vivo drug activity of artesunate is faster than is indicated by the parasite clearance half-life.


Subject(s)
Antimalarials , Artemisinins , Artesunate , Malaria, Falciparum , Plasmodium falciparum , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Artesunate/therapeutic use , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Models, Theoretical , Plasmodium falciparum/drug effects
8.
Nat Commun ; 11(1): 6159, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33268801

ABSTRACT

Malaria is spread by the transmission of sexual stage parasites, called gametocytes. However, with Plasmodium falciparum, gametocytes can only be detected in peripheral blood when they are mature and transmissible to a mosquito, which complicates control efforts. Here, we identify the set of genes overexpressed in patient blood samples with high levels of gametocyte-committed ring stage parasites. Expression of all 18 genes is regulated by transcription factor AP2-G, which is required for gametocytogenesis. We select three genes, not expressed in mature gametocytes, to develop as biomarkers. All three biomarkers we validate in vitro using 6 different parasite lines and develop an algorithm that predicts gametocyte production in ex vivo samples and volunteer infection studies. The biomarkers are also sensitive enough to monitor gametocyte production in asymptomatic P. falciparum carriers allowing early detection and treatment of infectious reservoirs, as well as the in vivo analysis of factors that modulate sexual conversion.


Subject(s)
Life Cycle Stages/genetics , Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Transcription Factor AP-2/genetics , Transcriptome , Animals , Biomarkers/blood , Carrier State , Erythrocytes/parasitology , Gametogenesis/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Molecular Sequence Annotation , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Transcription Factor AP-2/metabolism
9.
PLoS Med ; 17(8): e1003203, 2020 08.
Article in English | MEDLINE | ID: mdl-32822347

ABSTRACT

BACKGROUND: Artemisinin resistance is threatening malaria control. We aimed to develop and test a human model of artemisinin-resistant (ART-R) Plasmodium falciparum to evaluate the efficacy of drugs against ART-R malaria. METHODS AND FINDINGS: We conducted 2 sequential phase 1, single-centre, open-label clinical trials at Q-Pharm, Brisbane, Australia, using the induced blood-stage malaria (IBSM) model, whereby healthy participants are intravenously inoculated with blood-stage parasites. In a pilot study, participants were inoculated (Day 0) with approximately 2,800 viable P. falciparum ART-R parasites. In a comparative study, participants were randomised to receive approximately 2,800 viable P. falciparum ART-R (Day 0) or artemisinin-sensitive (ART-S) parasites (Day 1). In both studies, participants were administered a single approximately 2 mg/kg oral dose of artesunate (AS; Day 9). Primary outcomes were safety, ART-R parasite infectivity, and parasite clearance. In the pilot study, 2 participants were enrolled between April 27, 2017, and September 12, 2017, and included in final analyses (males n = 2 [100%], mean age = 26 years [range, 23-28 years]). In the comparative study, 25 participants were enrolled between October 26, 2017, and October 18, 2018, of whom 22 were inoculated and included in final analyses (ART-R infected participants: males n = 7 [53.8%], median age = 22 years [range, 18-40 years]; ART-S infected participants: males n = 5 [55.6%], median age = 28 years [range, 22-35 years]). In both studies, all participants inoculated with ART-R parasites became parasitaemic. A total of 36 adverse events were reported in the pilot study and 277 in the comparative study. Common adverse events in both studies included headache, pyrexia, myalgia, nausea, and chills; none were serious. Seven participants experienced transient severe falls in white cell counts and/or elevations in liver transaminase levels which were considered related to malaria. Additionally, 2 participants developed ventricular extrasystoles that were attributed to unmasking of a predisposition to benign fever-induced tachyarrhythmia. In the comparative study, parasite clearance half-life after AS was significantly longer for ART-R infected participants (n = 13, 6.5 hours; 95% confidence interval [CI] 6.3-6.7 hours) compared with ART-S infected participants (n = 9, 3.2 hours; 95% CI 3.0-3.3 hours; p < 0.001). The main limitation of this study was that the ART-R and ART-S parasite strains did not share the same genetic background. CONCLUSIONS: We developed the first (to our knowledge) human model of ART-R malaria. The delayed clearance profile of ART-R parasites after AS aligns with field study observations. Although based on a relatively small sample size, results indicate that this model can be safely used to assess new drugs against ART-R P. falciparum. TRIAL REGISTRATION: The studies were registered with the Australian New Zealand Clinical Trials Registry: ACTRN12617000244303 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372357) and ACTRN12617001394336 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373637).


Subject(s)
Anti-Infective Agents/therapeutic use , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/blood , Malaria, Falciparum/drug therapy , Plasmodium falciparum/metabolism , Adolescent , Adult , Animals , Anti-Infective Agents/adverse effects , Anti-Infective Agents/pharmacology , Antimalarials/adverse effects , Antimalarials/pharmacology , Artemisinins/adverse effects , Artemisinins/pharmacology , Artesunate/adverse effects , Artesunate/pharmacology , Artesunate/therapeutic use , Australia/epidemiology , Female , Headache/chemically induced , Healthy Volunteers , Humans , Malaria, Falciparum/epidemiology , Male , Nausea/chemically induced , Parasites/metabolism , Pilot Projects , Young Adult
10.
PLoS Negl Trop Dis ; 14(5): e0008295, 2020 05.
Article in English | MEDLINE | ID: mdl-32379762

ABSTRACT

Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Epidemiological Monitoring , Lactones/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Vivax/drug therapy , Malaria, Vivax/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Drug Therapy, Combination/methods , Female , Genetic Variation , Genotyping Techniques , Humans , Indonesia , Male , Microsatellite Repeats , Middle Aged , Molecular Epidemiology , Plasmodium falciparum/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium vivax/classification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Young Adult
11.
Trop Med Health ; 47: 49, 2019.
Article in English | MEDLINE | ID: mdl-31485189

ABSTRACT

Microscopy and 18S qPCR are the most common and field-friendly methods for quantifying malaria parasite density, and it is important that these methods can be interpreted as giving equivalent results. We compared results of quantitative measurement of Plasmodium falciparum parasitemia by microscopy and by 18S qPCR in a phase 2a study. Microscopy positive samples (n = 355; median 810 parasites/µL [IQR 40-10,471]) showed close agreement with 18S qPCR in mean log10/mL transformed parasitemia values by paired t test (difference 0.04, 95%CI - 0.01-0.10, p = 0.088). Excellent intraclass correlation (0.97) and no evidence of systematic or proportional differences by Passing-Bablok regression were observed. 18S qPCR appears to give equivalent parasitemia values to microscopy, which indicates 18S qPCR is an appropriate alternative method to quantify parasitemia in clinical trials.

12.
Am J Trop Med Hyg ; 97(6): 1788-1796, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29016343

ABSTRACT

The surveillance of malaria is generally undertaken on the assumption that samples passively collected at health facilities are comparable to or representative of the broader Plasmodium reservoir circulating in the community. Further characterization and comparability of the hidden asymptomatic parasite reservoir are needed to inform on the potential impact of sampling bias. This study explores the impact of sampling strategy on molecular surveillance by comparing the genetic make-up of Plasmodium falciparum and Plasmodium vivax isolates collected by passive versus active case detection. Sympatric isolates of P. falciparum and P. vivax were collected from a large community survey and ongoing clinical surveillance studies undertaken in the hypomesoendemic setting of Mimika District (Papua, Indonesia). Plasmodium falciparum isolates were genotyped at nine microsatellite loci and P. vivax at eight loci. Measures of diversity and differentiation were used to compare different patient and parasitological sample groups. The results demonstrated that passively detected cases (symptomatic) had comparable population diversity to those circulating in the community (asymptomatic) in both species. In addition, asymptomatic patent infections were as diverse as subpatent infections. However, a significant difference in multiplicity of infection (MOI) and percentage of polyclonal infections was observed between actively and passively detected P. vivax cases (mean MOI: 1.7 ± 0.7 versus 1.4 ± 1.4, respectively; P = 0.001). The study findings infer that, in hypomesoendemic settings, passive sampling is appropriate for molecular parasite surveillance strategies using the predominant clone in any given infection; however, the findings suggest caution when analyzing complexity of infection. Further evaluation is required in other endemic settings.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , DNA, Protozoan/isolation & purification , Female , Genetic Variation , Genotyping Techniques , Humans , Indonesia/epidemiology , Linkage Disequilibrium , Malaria, Falciparum/diagnosis , Malaria, Vivax/diagnosis , Male , Microsatellite Repeats , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Sympatry
13.
PLoS One ; 12(5): e0177445, 2017.
Article in English | MEDLINE | ID: mdl-28498860

ABSTRACT

BACKGROUND: Genetic analyses of Plasmodium have potential to inform on transmission dynamics, but few studies have evaluated this on a local spatial scale. We used microsatellite genotyping to characterise the micro-epidemiology of P. vivax and P. falciparum diversity to inform malaria control strategies in Timika, Papua Indonesia. METHODS: Genotyping was undertaken on 713 sympatric P. falciparum and P. vivax isolates from a cross-sectional household survey and clinical studies conducted in Timika. Standard population genetic measures were applied, and the data was compared to published data from Kalimantan, Bangka, Sumba and West Timor. RESULTS: Higher diversity (HE = 0.847 vs 0.625; p = 0.017) and polyclonality (46.2% vs 16.5%, p<0.001) were observed in P. vivax versus P. falciparum. Distinct P. falciparum substructure was observed, with two subpopulations, K1 and K2. K1 was comprised solely of asymptomatic infections and displayed greater relatedness to isolates from Sumba than to K2, possibly reflecting imported infections. CONCLUSIONS: The results demonstrate the greater refractoriness of P. vivax versus P. falciparum to control measures, and risk of distinct parasite subpopulations persisting in the community undetected by passive surveillance. These findings highlight the need for complimentary new surveillance strategies to identify transmission patterns that cannot be detected with traditional malariometric methods.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Adolescent , Asymptomatic Infections/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Genotype , Humans , Indonesia/epidemiology , Linkage Disequilibrium/genetics , Malaria, Falciparum/genetics , Malaria, Vivax/genetics , Male , Microsatellite Repeats/genetics , Molecular Epidemiology , Plasmodium falciparum/classification , Plasmodium vivax/classification , Software
14.
PLoS Negl Trop Dis ; 11(3): e0005465, 2017 03.
Article in English | MEDLINE | ID: mdl-28362818

ABSTRACT

BACKGROUND: The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS: The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS: VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.


Subject(s)
Access to Information , Information Storage and Retrieval , Microsatellite Repeats , Plasmodium vivax/genetics , Software , Statistics as Topic/methods , Alleles , Genetic Variation , Genotype , Humans , Information Dissemination , Internet , Linkage Disequilibrium , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Plasmodium falciparum/genetics
15.
PLoS One ; 11(10): e0165340, 2016.
Article in English | MEDLINE | ID: mdl-27788243

ABSTRACT

Submicroscopic Plasmodium infections are an important parasite reservoir, but their clinical relevance is poorly defined. A cross-sectional household survey was conducted in southern Papua, Indonesia, using cluster random sampling. Data were recorded using a standardized questionnaire. Blood samples were collected for haemoglobin measurement. Plasmodium parasitaemia was determined by blood film microscopy and PCR. Between April and July 2013, 800 households and 2,830 individuals were surveyed. Peripheral parasitaemia was detected in 37.7% (968/2,567) of individuals, 36.8% (357) of whom were identified by blood film examination. Overall the prevalence of P. falciparum parasitaemia was 15.4% (396/2567) and that of P. vivax 18.3% (471/2567). In parasitaemic individuals, submicroscopic infection was significantly more likely in adults (adjusted odds ratio (AOR): 3.82 [95%CI: 2.49-5.86], p<0.001) compared to children, females (AOR = 1.41 [1.07-1.86], p = 0.013), individuals not sleeping under a bednet (AOR = 1.4 [1.0-1.8], p = 0.035), and being afebrile (AOR = 3.2 [1.49-6.93], p = 0.003). The risk of anaemia (according to WHO guidelines) was 32.8% and significantly increased in those with asymptomatic parasitaemia (AOR 2.9 [95% 2.1-4.0], p = 0.007), and submicroscopic P. falciparum infections (AOR 2.5 [95% 1.7-3.6], p = 0.002). Asymptomatic and submicroscopic infections in this area co-endemic for P. falciparum and P. vivax constitute two thirds of detectable parasitaemia and are associated with a high risk of anaemia. Novel public health strategies are needed to detect and eliminate these parasite reservoirs, for the benefit both of the patient and the community.


Subject(s)
Anemia/complications , Asymptomatic Diseases , Parasitemia/complications , Parasitemia/epidemiology , Adult , Child , Child, Preschool , Female , Humans , Indonesia/epidemiology , Male , Parasitemia/pathology , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Risk
16.
Malar J ; 15: 328, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27328659

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax infections compromise dendritic cell (DC) function and expand regulatory T (Treg) cells in both clinical disease (malaria) and experimental human sub-microscopic infection. Conversely, in asymptomatic microscopy-positive (patent) P. falciparum or P. vivax infection in endemic areas, blood DC increase or retain HLA-DR expression and Treg cells exhibit reduced activation, suggesting that DC and Treg cells contribute to the control of patent asymptomatic infection. The effect of sub-microscopic (sub-patent) asymptomatic Plasmodium infection on DC and Treg cells in malaria-endemic area residents remains unclear. METHODS: In a cross-sectional household survey conducted in Papua, Indonesia, 162 asymptomatic adults were prospectively evaluated for DC and Treg cells using field-based flow cytometry. Of these, 161 individuals (99 %) were assessed retrospectively by polymerase chain reaction (PCR), 19 of whom had sub-microscopic infection with P. falciparum and 15 with sub-microscopic P. vivax infection. Flow cytometric data were re-analysed after re-grouping asymptomatic individuals according to PCR results into negative controls, sub-microscopic and microscopic parasitaemia to examine DC and Treg cell phenotype in sub-microscopic infection. RESULTS: Asymptomatic adults with sub-microscopic P. falciparum or P. vivax infection had DC HLA-DR expression and Treg cell activation comparable to PCR-negative controls. Sub-microscopic P. falciparum infection was associated with lower peripheral CD4(+) T cells and lymphocytes, however sub-microscopic Plasmodium infection had no apparent effect on DC sub-set number or Treg cell frequency. CONCLUSIONS: In contrast to the impairment of DC maturation/function and the activation of Treg cells seen with sub-microscopic parasitaemia in primary experimental human Plasmodium infection, no phenotypic evidence of dysregulation of DC and Treg cells was observed in asymptomatic sub-microscopic Plasmodium infection in Indonesian adults. This is consistent with DC and Treg cells retaining their functional capacity in sub-microscopic asymptomatic infection with P. falciparum or P. vivax in malaria-endemic areas.


Subject(s)
Asymptomatic Infections , Dendritic Cells/immunology , Malaria, Falciparum/immunology , Malaria, Vivax/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Cross-Sectional Studies , Family Characteristics , Female , Flow Cytometry , Humans , Indonesia , Male , Polymerase Chain Reaction , Prospective Studies , Retrospective Studies , Young Adult
17.
Antimicrob Agents Chemother ; 60(1): 361-7, 2016 01.
Article in English | MEDLINE | ID: mdl-26525783

ABSTRACT

Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivax crt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax ß-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance, Multiple/genetics , Life Cycle Stages/drug effects , Membrane Transport Proteins/genetics , Plasmodium vivax/drug effects , Protozoan Proteins/genetics , Amodiaquine/pharmacology , Artemisinins/pharmacology , Artesunate , Erythrocytes/drug effects , Erythrocytes/parasitology , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Gene Expression Regulation , Humans , Inhibitory Concentration 50 , Life Cycle Stages/genetics , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Mefloquine/pharmacology , Membrane Transport Proteins/metabolism , Plasmodium vivax/genetics , Plasmodium vivax/growth & development , Plasmodium vivax/metabolism , Protozoan Proteins/metabolism , Quinolines/pharmacology , Transcription, Genetic , Tubulin/genetics , Tubulin/metabolism
18.
PLoS One ; 10(7): e0131576, 2015.
Article in English | MEDLINE | ID: mdl-26151448

ABSTRACT

A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed.


Subject(s)
Antigens, Protozoan/genetics , Gene Deletion , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Antigens, Protozoan/metabolism , Colombia/epidemiology , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Diagnostic Tests, Routine , Electrophoresis, Agar Gel , Genotype , Geography , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Polymerase Chain Reaction , Protozoan Proteins/metabolism
19.
Mem Inst Oswaldo Cruz ; 106 Suppl 1: 123-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21881766

ABSTRACT

Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Plasmodium falciparum/drug effects , Colombia , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests/methods
20.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 123-129, Aug. 2011. ilus, tab
Article in English | LILACS | ID: lil-597253

ABSTRACT

Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.


Subject(s)
Humans , Antimalarials , Drug Resistance , Plasmodium falciparum , Colombia , Malaria, Falciparum , Parasitic Sensitivity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...