Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Contemp Dent Pract ; 25(3): 276-279, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690702

ABSTRACT

AIM: The current study was carried out to assess the interaction between fibrin clots and dental implants following various surface treatments. MATERIALS AND METHODS: In this investigation, 45 dental implants with dimensions of 16 mm in length and 5 mm in diameter were utilized. They were divided up into three groups, each consisting of fifteen samples. Group I: Control; Group II: Ultraviolet (UV) light treated; and group III: Sandblasted and acid-etching (SLA) treated. Healthy volunteers' venous blood samples were drawn into vacutainer tubes without the use of anticoagulants. The samples were centrifuged for 3 minutes at 2700 rpm in a table centrifuge. The entire implant was submerged in room-temperature liquid fibrinogen for 60 minutes. Then, scanning electronic microscopy (SEM) was used to examine each sample. The inter- and intragroup assessments were obtained using the Mann-Whitney U test and the Kruskal-Wallis test; p-values less than 0.05 were regarded as statistically significant. RESULTS: The maximum adhesion of fibrin clot was found in SLA treated group (2.42 ± 0.10) followed by the UV light-treated group (2.18 ± 0.08) and control group (1.20 ± 0.02). There was a statistically significant difference found between the three surface-treated groups (p < 0.001). CONCLUSION: All surface-treatment methods exhibit adhesion between the implant surface and the fibrin clot. However, the highest adherence of fibrin clot was found in SLA treated group compared to the UV light-treated and control group. CLINICAL SIGNIFICANCE: The physical and chemical characteristics of an implant's surface have a significant impact on the way blood clots organize. At the interface between the implant and the bone, blood clot production can initiate and facilitate the healing process. How to cite this article: Jalaluddin M, Ramanna PK, Swain M, et al. Evaluation of Fibrin Clot Interaction with Dental Implant after Different Surface Treatments: An In Vitro Study. J Contemp Dent Pract 2024;25(3):276-279.


Subject(s)
Dental Implants , Fibrin , Microscopy, Electron, Scanning , Surface Properties , Humans , In Vitro Techniques , Blood Coagulation , Ultraviolet Rays , Acid Etching, Dental
2.
J Environ Manage ; 356: 120361, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38493646

ABSTRACT

The increased load of plastic in waste streams after the COVID-19 pandemic outbreak has increased the possibility of microplastics (MPs) contamination channelling through the rivers and infiltrating the aquatic ecosystems. MPs in packaged water, community-stored water, groundwater, and surface water of Kaveri River (KR), Thamirabarani River (TR), Adyar River (AR), and Cooum River (CR) in Tamil Nadu were therefore investigated about 2 years after the COVID-19 pandemic outbreak. Using µFTIR and µRaman spectroscopy, polyamide, polypropylene, polyethylene, ethylene vinyl alcohol copolymer resin, and polyvinyl chloride were identified as the primary polymer types. The average number of MPs was 2.15 ± 1.9 MP/L, 1.1 ± 0.99 MP/L, 5.25 ± 1.15 MP/L, and 4 ± 2.65 MP/L in KR, TR, AR, and CR, respectively, and 1.75 ± 1.26 MP/L in groundwater, and 2.33 ± 1.52 MP/L in community stored water. Only LDPE was detected in recycled plastic-made drinking water bottles. More than 50% of MPs were found to be of size less than 1 mm, with fibrous MPs being the prevalent type, and a notable prevalence of blue-coloured microplastics in all the sample types. The Pollution Load Index (PLI) was >1 in all the rivers. Toxicity rating based on the polymer risk index (PORI) categorized AR and TR at medium risk (category II), compared to KR and CR at considerable risk (category III). Overall pollution risk index (PRI) followed a decreasing trend with CR > AR > KR > TR of considerable to low-risk category. Ecological risk assessment indicates a negligible risk to freshwater biota, except for four sites in the middle and lower stretches of Adyar River (AR - 2, AR - 4) and upper and lower stretches of Cooum River (CR - 1, CR - 3), located adjacent to direct sewer outlets, and one location in the lower stretch of Kaveri River (KR - 9), known for fishing and tourist activities.


Subject(s)
COVID-19 , Groundwater , Water Pollutants, Chemical , Humans , COVID-19/epidemiology , Ecosystem , India , Microplastics , Pandemics , Plastics , Disease Outbreaks , Polyethylene , Polymers , Environmental Monitoring
3.
Chemosphere ; 353: 141541, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423149

ABSTRACT

Plastics are a vital component of our daily lives in the contemporary globalization period; they are present in all facets of modern life. Because the bulk of synthetic plastics utilized in the market are non-biodegradable by nature, the issues associated with their contamination are unavoidable in an era dominated by polymers. Polyethylene terephthalate (PET), which is extensively used in industries such as automotive, packaging, textile, food, and beverages production represents a major share of these non-biodegradable polymer productions. Given its extensive application across various sectors, PET usage results in a considerable amount of post-consumer waste, majority of which require disposal after a certain period. However, the recycling of polymeric waste materials has emerged as a prominent topic in research, driven by growing environmental consciousness. Numerous studies indicate that products derived from polymeric waste can be converted into a new polymeric resource in diverse sectors, including organic coatings and regenerative medicine. This review aims to consolidate significant scientific literatures on the recycling PET waste for electrochemical device applications. It also highlights the current challenges in scaling up these processes for industrial application.


Subject(s)
Plastics , Polyethylene Terephthalates , Recycling , Polymers , Product Packaging
SELECTION OF CITATIONS
SEARCH DETAIL