Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509322

ABSTRACT

Endometrial cancer (EC) is an increasing health concern, with its growth driven by an angiogenic switch that occurs early in cancer development. Our study used publicly available datasets to examine the expression of angiogenesis-related genes and proteins in EC tissues, and compared them with adjacent control tissues. We identified nine genes with significant differential expression and selected six additional antiangiogenic genes from prior research for validation on EC tissue in a cohort of 36 EC patients. Using machine learning, we built a prognostic model for EC, combining our data with The Cancer Genome Atlas (TCGA). Our results revealed a significant up-regulation of IL8 and LEP and down-regulation of eleven other genes in EC tissues. These genes showed differential expression in the early stages and lower grades of EC, and in patients without deep myometrial or lymphovascular invasion. Gene co-expressions were stronger in EC tissues, particularly those with lymphovascular invasion. We also found more extensive angiogenesis-related gene involvement in postmenopausal women. In conclusion, our findings suggest that angiogenesis in EC is predominantly driven by decreased antiangiogenic factor expression, particularly in EC with less favourable prognostic features. Our machine learning model effectively stratified EC based on gene expression, distinguishing between low and high-grade cases.

2.
Front Pharmacol ; 13: 920379, 2022.
Article in English | MEDLINE | ID: mdl-36034868

ABSTRACT

In this study, we present the synthesis, kinetic studies of inhibitory activity toward aldo-keto reductase 1C (AKR1C) enzymes, and anticancer potential toward chemoresistant ovarian cancer of 10 organoruthenium compounds bearing diketonate (1-6) and hydroxyquinolinate (7-10) chelating ligands with the general formula [(η6-p-cymene)Ru(chel)(X)]n+ where chel represents the chelating ligand and X the chlorido or pta ligand. Our studies show that these compounds are potent inhibitors of the AKR enzymes with an uncommon inhibitory mechanism, where two inhibitor molecules bind to the enzyme in a first fast and reversible step and a second slower and irreversible step. The binding potency of each step is dependent on the chemical structure of the monodentate ligands in the metalloinhibitors with the chlorido complexes generally acting as reversible inhibitors and pta complexes as irreversible inhibitors. Our study also shows that compounds 1-9 have a moderate yet better anti-proliferative and anti-migration action on the chemoresistant ovarian cancer cell line COV362 compared to carboplatin and similar effects to cisplatin.

3.
Cancers (Basel) ; 14(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35681563

ABSTRACT

Ovarian cancer (OC) is highly lethal and heterogeneous. Several hormones are involved in OC etiology including estrogens; however, their role in OC is not completely understood. Here, we performed targeted transcriptomics and estrogen metabolism analyses in high-grade serous OC (HGSOC), OVSAHO, Kuramochi, COV632, and immortalized normal ovarian epithelial HIO-80 cells. We compared these data with public transcriptome and proteome data for the HGSOC tissues. In all model systems, high steroid sulfatase expression and weak/undetected aromatase (CYP19A1) expression indicated the formation of estrogens from the precursor estrone-sulfate (E1-S). In OC cells, the metabolism of E1-S to estradiol was the highest in OVSAHO, followed by Kuramochi and COV362 cells, and decreased with increasing chemoresistance. In addition, higher HSD17B14 and CYP1A2 expressions were observed in highly chemoresistant COV362 cells and platinum-resistant tissues compared to those in HIO-80 cells and platinum-sensitive tissues. The HGSOC cell models differed in HSD17B10, CYP1B1, and NQO1 expression. Proteomic data also showed different levels of HSD17B10, CYP1B1, NQO1, and SULT1E1 between the four HGSOC subtypes. These results suggest that different HGSOC subtypes form different levels of estrogens and their metabolites and that the estrogen-biosynthesis-associated targets should be further studied for the development of personalized treatment.

4.
Front Mol Biosci ; 8: 743403, 2021.
Article in English | MEDLINE | ID: mdl-34805270

ABSTRACT

Endometrial cancer (EC) is the most common gynecological malignancy in resource-abundant countries. The majority of EC cases are estrogen dependent but the mechanisms of estrogen biosynthesis and oxidative metabolism and estrogen action are not completely understood. Here, we evaluated formation of estrogens in models of moderately and poorly differentiated EC: RL95-2 and KLE cells, respectively. Results revealed high expression of estrone-sulfate (E1-S) transporters (SLCO1A2, SLCO1B3, SLCO1C1, SLCO3A1, SLC10A6, SLC22A9), and increased E1-S uptake in KLE vs RL95-2 cells. In RL95-2 cells, higher levels of sulfatase and better metabolism of E1-S to E1 were confirmed compared to KLE cells. In KLE cells, disturbed balance in expression of HSD17B genes led to enhanced activation of E1 to E2, compared to RL95-2 cells. Additionally, increased CYP1B1 expression and down-regulation of genes encoding phase II metabolic enzymes: COMT, NQO1, NQO2, and GSTP1 suggested decreased detoxification of carcinogenic metabolites in KLE cells. Results indicate that in model cell lines of moderately and poorly differentiated EC, estrogens can be formed via the sulfatase pathway.

5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917029

ABSTRACT

Endometrial cancer (EC) is associated with increased estrogen actions. Locally, estrogens can be formed from estrone-sulphate (E1-S) after cellular uptake by organic anion-transporting polypeptides (OATP) or organic anion transporters (OAT). Efflux of E1-S is enabled by ATP Binding Cassette transporters (ABC) and organic solute transporter (OST)αß. Currently, 19 E1-S transporters are known but their roles in EC are not yet understood. Here, we analysed levels of E1-S transporters in Ishikawa (premenopausal EC), HEC-1-A (postmenopausal EC), HIEEC (control) cell lines, in EC tissue, examined metabolism of steroid precursor E1-S, studied effects of OATPs' inhibition and gene-silencing on E1-S uptake, and assessed associations between transporters and histopathological data. Results revealed enhanced E1-S metabolism in HEC-1-A versus Ishikawa which could be explained by higher levels of OATPs in HEC-1-A versus Ishikawa, especially 6.3-fold up-regulation of OATP1B3 (SLCO1B3), as also confirmed by immunocytochemical staining and gene silencing studies, lower ABCG2 expression and higher levels of sulfatase (STS). In EC versus adjacent control tissue the highest differences were seen for ABCG2 and SLC51B (OSTß) which were 3.0-fold and 2.1-fold down-regulated, respectively. Immunohistochemistry confirmed lower levels of these two transporters in EC versus adjacent control tissue. Further analysis of histopathological data indicated that SLCO1B3 might be important for uptake of E1-S in tumours without lymphovascular invasion where it was 15.6-fold up-regulated as compared to adjacent control tissue. Our results clearly indicate the importance of E1-S transporters in EC pathophysiology and provide a base for further studies towards development of targeted treatment.


Subject(s)
Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Estrone/analogs & derivatives , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Age Factors , Biological Transport , Cell Line, Tumor , Endometrial Neoplasms/pathology , Estrone/metabolism , Female , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multigene Family , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Staging , Postmenopause , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
6.
Cancers (Basel) ; 12(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979221

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is currently treated with cytoreductive surgery and platinum-based chemotherapy. The majority of patients show a primary response; however, many rapidly develop drug resistance. Antiestrogens have been studied as low toxic treatment options for HGSOC, with higher response rates in platinum-sensitive cases. Mechanisms for this difference in response remain unknown. Therefore, the present study investigated the impact of platinum resistance on steroid metabolism in six established HGSOC cell lines sensitive and resistant against carboplatin using a high-resolution mass spectrometry assay to simultaneously quantify the ten main steroids of the estrogenic metabolic pathway. An up to 60-fold higher formation of steroid hormones and their sulfated or glucuronidated metabolites was observed in carboplatin-sensitive cells, which was reversible by treatment with interleukin-6 (IL-6). Conversely, treatment of carboplatin-resistant cells expressing high levels of endogenous IL-6 with the monoclonal anti-IL-6R antibody tocilizumab changed their status to "platinum-sensitive", exhibiting a decreased IC50 value for carboplatin, decreased growth, and significantly higher estrogen metabolism. Analysis of these metabolic differences could help to detect platinum resistance in HGSOC patients earlier, thereby allowing more efficient interventions.

7.
Dalton Trans ; 45(29): 11791-800, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27357845

ABSTRACT

Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range.


Subject(s)
Aldo-Keto Reductases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Pyridines/pharmacology , Ruthenium/pharmacology , Thiones/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Humans , MCF-7 Cells , Pyridines/chemistry , Ruthenium/chemistry , Thiones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...