Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559016

ABSTRACT

The proliferation of single cell transcriptomics has potentiated our ability to unveil patterns that reflect dynamic cellular processes, rather than cell type compositional effects that emerge from bulk tissue samples. In this study, we leverage a broad collection of single cell RNA-seq data to identify the gene partners whose expression is most coordinated with each human and mouse transcription regulator (TR). We assembled 120 human and 103 mouse scRNA-seq datasets from the literature (>28 millions cells), constructing a single cell coexpression network for each. We aimed to understand the consistency of TR coexpression profiles across a broad sampling of biological contexts, rather than examine the preservation of context-specific signals. Our workflow therefore explicitly prioritizes the patterns that are most reproducible across cell types. Towards this goal, we characterize the similarity of each TR's coexpression within and across species. We create single cell coexpression rankings for each TR, demonstrating that this aggregated information recovers literature curated targets on par with ChIP-seq data. We then combine the coexpression and ChIP-seq information to identify candidate regulatory interactions supported across methods and species. Finally, we highlight interactions for the important neural TR ASCL1 to demonstrate how our compiled information can be adopted for community use.

2.
Article in English | MEDLINE | ID: mdl-37918557

ABSTRACT

OBJECTIVE: SETD1A encodes a histone methyltransferase involved in various cell cycle regulatory processes. Loss-of-function SETD1A variants have been associated with numerous neurodevelopmental phenotypes, including intellectual disability and schizophrenia. While the association between rare coding variants in SETD1A and schizophrenia has achieved genome-wide significance by rare variant burden testing, only a few studies have described the psychiatric phenomenology of such individuals in detail. This systematic review and case report aims to characterize the neurodevelopmental and psychiatric phenotypes of SETD1A variant-associated schizophrenia. METHODS: A PubMed search was completed in July 2022 and updated in May 2023. Only studies that reported individuals with a SETD1A variant as well as a primary psychotic disorder were ultimately included. Additionally, another two previously unpublished cases of SETD1A variant-associated psychosis from our own sequencing cohort are described. RESULTS: The search yielded 32 articles. While 15 articles met inclusion criteria, only five provided case descriptions. In total, phenotypic information was available for 11 individuals, in addition to our own two unpublished cases. Our findings suggest that although individuals with SETD1A variant-associated schizophrenia may share a number of common features, phenotypic variability nonetheless exists. Moreover, although such individuals may exhibit numerous other neurodevelopmental features suggestive of the syndrome, their psychiatric presentations appear to be similar to those of general schizophrenia populations. CONCLUSIONS: Loss-of-function SETD1A variants may underlie the development of psychosis in a small percentage of individuals with schizophrenia. Identifying such individuals may become increasingly important, given the potential for advances in precision medicine treatment approaches.


Subject(s)
Intellectual Disability , Psychotic Disorders , Schizophrenia , Humans , Genetic Predisposition to Disease , Intellectual Disability/genetics , Phenotype , Psychotic Disorders/genetics , Psychotic Disorders/psychology , Schizophrenia/genetics
3.
J Law Biosci ; 10(2): lsad016, 2023.
Article in English | MEDLINE | ID: mdl-37484885

ABSTRACT

The open science (OS) movement has garnered increasing support in academia alongside continued financial and reputational incentives to obtain intellectual property (IP) protections over research outputs. Here, we explore stakeholder perspectives about intersections between OS and IP to inform the development of institutional OS guidelines for the neurosciences in Canada. We held six focus groups and three interviews with 29 faculty members from a major research and clinical center in Canada. The semi-structured interview guide probed perspectives on the respective roles of patents and OS in neuroscience-related research. We applied thematic content analysis to the transcript data, and extracted 12 major themes and 30 subthemes. Participants perceived a conflict between OS ideologies and the inherently restrictive nature of patents, and highlighted the importance of autonomy, justice, and respectful, culturally safe research practices in any future adoption of OS. Overall, the data suggest that a hybrid OS-IP policy model supported by local expertise may be best suited to meet the priorities and values of the community while mitigating perceived threats. This model includes expanded education about patenting, incentivized data sharing and collaboration, and tangible resources to support implementation of OS that includes skilled support in digital research infrastructures.

4.
PLoS Comput Biol ; 19(7): e1011230, 2023 07.
Article in English | MEDLINE | ID: mdl-37498959

ABSTRACT

The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.


Subject(s)
Neurosciences , Canada , Publications , Communication
5.
Genome Res ; 33(5): 763-778, 2023 May.
Article in English | MEDLINE | ID: mdl-37308292

ABSTRACT

Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research. ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a primary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments. Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identification, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of ranking human and mouse TR-target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combining these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a framework extensible to other TRs, our work also provides empirically ranked TR-target listings, as well as transparent experiment-level gene summaries for community use.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Transcription Factors , Humans , Animals , Mice , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin Immunoprecipitation/methods , Genomics/methods
6.
Stem Cell Reports ; 18(3): 765-781, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36801003

ABSTRACT

Improving methods for human embryonic stem cell differentiation represents a challenge in modern regenerative medicine research. Using drug repurposing approaches, we discover small molecules that regulate the formation of definitive endoderm. Among them are inhibitors of known processes involved in endoderm differentiation (mTOR, PI3K, and JNK pathways) and a new compound, with an unknown mechanism of action, capable of inducing endoderm formation in the absence of growth factors in the media. Optimization of the classical protocol by inclusion of this compound achieves the same differentiation efficiency with a 90% cost reduction. The presented in silico procedure for candidate molecule selection has broad potential for improving stem cell differentiation protocols.


Subject(s)
Endoderm , Human Embryonic Stem Cells , Humans , Cell Differentiation/physiology
7.
Hum Mutat ; 43(6): 743-759, 2022 06.
Article in English | MEDLINE | ID: mdl-35224820

ABSTRACT

Next-generation sequencing is a prevalent diagnostic tool for undiagnosed diseases and has played a significant role in rare disease gene discovery. Although this technology resolves some cases, others are given a list of possibly damaging genetic variants necessitating functional studies. Productive collaborations between scientists, clinicians, and patients (affected individuals) can help resolve such medical mysteries and provide insights into in vivo function of human genes. Furthermore, facilitating interactions between scientists and research funders, including nonprofit organizations or commercial entities, can dramatically reduce the time to translate discoveries from bench to bedside. Several systems designed to connect clinicians and researchers with a shared gene of interest have been successful. However, these platforms exclude some stakeholders based on their role or geography. Here we describe ModelMatcher, a global online matchmaking tool designed to facilitate cross-disciplinary collaborations, especially between scientists and other stakeholders of rare and undiagnosed disease research. ModelMatcher is integrated into the Rare Diseases Models and Mechanisms Network and Matchmaker Exchange, allowing users to identify potential collaborators in other registries. This living database decreases the time from when a scientist or clinician is making discoveries regarding their genes of interest, to when they identify collaborators and sponsors to facilitate translational and therapeutic research.


Subject(s)
Undiagnosed Diseases , Databases, Factual , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Registries , Research Personnel
8.
PLoS Comput Biol ; 17(10): e1009484, 2021 10.
Article in English | MEDLINE | ID: mdl-34665801

ABSTRACT

To facilitate the development of large-scale transcriptional regulatory networks (TRNs) that may enable in-silico analyses of disease mechanisms, a reliable catalogue of experimentally verified direct transcriptional regulatory interactions (DTRIs) is needed for training and validation. There has been a long history of using low-throughput experiments to validate single DTRIs. Therefore, we reason that a reliable set of DTRIs could be produced by curating the published literature for such evidence. In our survey of previous curation efforts, we identified the lack of details about the quantity and the types of experimental evidence to be a major gap, despite the theoretical importance of such details for the identification of bona fide DTRIs. We developed a curation protocol to inspect the published literature for support of DTRIs at the experiment level, focusing on genes important to the development of the mammalian nervous system. We sought to record three types of low-throughput experiments: Transcription factor (TF) perturbation, TF-DNA binding, and TF-reporter assays. Using this protocol, we examined a total of 1,310 papers to assemble a collection of 1,499 unique DTRIs, involving 251 TFs and 825 target genes, many of which were not reported in any other DTRI resource. The majority of DTRIs (965; 64%) were supported by two or more types of experimental evidence and 27% were supported by all three. Of the DTRIs with all three types of evidence, 170 had been tested using primary tissues or cells and 44 had been tested directly in the central nervous system. We used our resource to document research biases among reports towards a small number of well-studied TFs. To demonstrate a use case for this resource, we compared our curation to a previously published high-throughput perturbation screen and found significant enrichment of the curated targets among genes differentially expressed in the developing brain in response to Pax6 deletion. This study demonstrates a proof-of-concept for the assembly of a high resolution DTRI resource to support the development of large-scale TRNs.


Subject(s)
Brain/growth & development , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Animals , Brain/metabolism , Computational Biology , DNA/chemistry , DNA/genetics , DNA/metabolism , Humans , Mice , Protein Binding/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Sci Rep ; 11(1): 17624, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475469

ABSTRACT

The Connectivity Map (CMap) is a popular resource designed for data-driven drug repositioning using a large transcriptomic compendium. However, evaluations of its performance are limited. We used two iterations of CMap (CMap 1 and 2) to assess their comparability and reliability. We queried CMap 2 with CMap 1-derived signatures, expecting CMap 2 would highly prioritize the queried compounds; the success rate was 17%. Analysis of previously published prioritizations yielded similar results. Low recall is caused by low differential expression (DE) reproducibility both between CMaps and within each CMap. DE strength was predictive of reproducibility, and is influenced by compound concentration and cell-line responsiveness. Reproducibility of CMap 2 sample expression levels was also lower than expected. We attempted to identify the "better" CMap by comparison with a third dataset, but they were mutually discordant. Our findings have implications for CMap usage and we suggest steps for investigators to limit false positives.


Subject(s)
Drug Repositioning/methods , Transcriptome , Drug Discovery/methods , Gene Expression/drug effects , Humans , Transcriptome/drug effects
10.
Sci Rep ; 11(1): 15950, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354131

ABSTRACT

Discovering genes involved in complex human genetic disorders is a major challenge. Many have suggested that machine learning (ML) algorithms using gene networks can be used to supplement traditional genetic association-based approaches to predict or prioritize disease genes. However, questions have been raised about the utility of ML methods for this type of task due to biases within the data, and poor real-world performance. Using autism spectrum disorder (ASD) as a test case, we sought to investigate the question: can machine learning aid in the discovery of disease genes? We collected 13 published ASD gene prioritization studies and evaluated their performance using known and novel high-confidence ASD genes. We also investigated their biases towards generic gene annotations, like number of association publications. We found that ML methods which do not incorporate genetics information have limited utility for prioritization of ASD risk genes. These studies perform at a comparable level to generic measures of likelihood for the involvement of genes in any condition, and do not out-perform genetic association studies. Future efforts to discover disease genes should be focused on developing and validating statistical models for genetic association, specifically for association between rare variants and disease, rather than developing complex machine learning methods using complex heterogeneous biological data with unknown reliability.


Subject(s)
Autism Spectrum Disorder/genetics , Computational Biology/methods , Algorithms , Autistic Disorder/genetics , Gene Regulatory Networks/genetics , Genetic Association Studies/methods , Genetic Predisposition to Disease/genetics , Humans , Machine Learning , Molecular Sequence Annotation/methods , Reproducibility of Results , Risk Factors
11.
Front Mol Neurosci ; 14: 637143, 2021.
Article in English | MEDLINE | ID: mdl-33746712

ABSTRACT

Transcriptionally profiling minor cellular populations remains an ongoing challenge in molecular genomics. Single-cell RNA sequencing has provided valuable insights into a number of hypotheses, but practical and analytical challenges have limited its widespread adoption. A similar approach, which we term single-cell type RNA sequencing (sctRNA-seq), involves the enrichment and sequencing of a pool of cells, yielding cell type-level resolution transcriptomes. While this approach offers benefits in terms of mRNA sampling from targeted cell types, it is potentially affected by off-target contamination from surrounding cell types. Here, we leveraged single-cell sequencing datasets to apply a computational approach for estimating and controlling the amount of off-target cell type contamination in sctRNA-seq datasets. In datasets obtained using a number of technologies for cell purification, we found that most sctRNA-seq datasets tended to show some amount of off-target mRNA contamination from surrounding cells. However, using covariates for cellular contamination in downstream differential expression analyses increased the quality of our models for differential expression analysis in case/control comparisons and typically resulted in the discovery of more differentially expressed genes. In general, our method provides a flexible approach for detecting and controlling off-target cell type contamination in sctRNA-seq datasets.

12.
Database (Oxford) ; 20212021 02 18.
Article in English | MEDLINE | ID: mdl-33599246

ABSTRACT

Vast amounts of transcriptomic data reside in public repositories, but effective reuse remains challenging. Issues include unstructured dataset metadata, inconsistent data processing and quality control, and inconsistent probe-gene mappings across microarray technologies. Thus, extensive curation and data reprocessing are necessary prior to any reuse. The Gemma bioinformatics system was created to help address these issues. Gemma consists of a database of curated transcriptomic datasets, analytical software, a web interface and web services. Here we present an update on Gemma's holdings, data processing and analysis pipelines, our curation guidelines, and software features. As of June 2020, Gemma contains 10 811 manually curated datasets (primarily human, mouse and rat), over 395 000 samples and hundreds of curated transcriptomic platforms (both microarray and RNA sequencing). Dataset topics were represented with 10 215 distinct terms from 12 ontologies, for a total of 54 316 topic annotations (mean topics/dataset = 5.2). While Gemma has broad coverage of conditions and tissues, it captures a large majority of available brain-related datasets, accounting for 34% of its holdings. Users can access the curated data and differential expression analyses through the Gemma website, RESTful service and an R package. Database URL: https://gemma.msl.ubc.ca/home.html.


Subject(s)
Metadata , Transcriptome , Animals , Computational Biology , Data Curation , Mice , Rats , Sequence Analysis, RNA , Software , Transcriptome/genetics
13.
Am J Hum Genet ; 108(1): 148-162, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33308442

ABSTRACT

SYNGAP1 is a neuronal Ras and Rap GTPase-activating protein with important roles in regulating excitatory synaptic plasticity. While many SYNGAP1 missense and nonsense mutations have been associated with intellectual disability, epilepsy, schizophrenia, and autism spectrum disorder (ASD), whether and how they contribute to individual disease phenotypes is often unknown. Here, we characterize 57 variants in seven assays that examine multiple aspects of SYNGAP1 function. Specifically, we used multiplex phospho-flow cytometry to measure variant impact on protein stability, pERK, pGSK3ß, pp38, pCREB, and high-content imaging to examine subcellular localization. We find variants ranging from complete loss-of-function (LoF) to wild-type (WT)-like in their regulation of pERK and pGSK3ß, while all variants retain at least partial ability to dephosphorylate pCREB. Interestingly, our assays reveal that a larger proportion of variants located within the disordered domain of unknown function (DUF) comprising the C-terminal half of SYNGAP1 exhibited higher LoF, compared to variants within the better studied catalytic domain. Moreover, we find protein instability to be a major contributor to dysfunction for only two missense variants, both located within the catalytic domain. Using high-content imaging, we find variants located within the C2 domain known to mediate membrane lipid interactions exhibit significantly larger cytoplasmic speckles than WT SYNGAP1. Moreover, this subcellular phenotype shows both correlation with altered catalytic activity and unique deviation from signaling assay results, highlighting multiple independent molecular mechanisms underlying variant dysfunction. Our multidimensional dataset allows clustering of variants based on functional phenotypes and provides high-confidence, multi-functional measures for making pathogenicity predictions.


Subject(s)
GTP Phosphohydrolases/genetics , Mutation/genetics , Signal Transduction/genetics , ras GTPase-Activating Proteins/genetics , Autism Spectrum Disorder/genetics , Cell Line , Epilepsy/genetics , HEK293 Cells , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Protein Stability
14.
Elife ; 92020 10 30.
Article in English | MEDLINE | ID: mdl-33124981

ABSTRACT

Retrograde BMP signaling and canonical pMad/Medea-mediated transcription regulate diverse target genes across subsets of Drosophila efferent neurons, to differentiate neuropeptidergic neurons and promote motor neuron terminal maturation. How a common BMP signal regulates diverse target genes across many neuronal subsets remains largely unresolved, although available evidence implicates subset-specific transcription factor codes rather than differences in BMP signaling. Here we examine the cis-regulatory mechanisms restricting BMP-induced FMRFa neuropeptide expression to Tv4-neurons. We find that pMad/Medea bind at an atypical, low affinity motif in the FMRFa enhancer. Converting this motif to high affinity caused ectopic enhancer activity and eliminated Tv4-neuron expression. In silico searches identified additional motif instances functional in other efferent neurons, implicating broader functions for this motif in BMP-dependent enhancer activity. Thus, differential interpretation of a common BMP signal, conferred by low affinity pMad/Medea binding motifs, can contribute to the specification of BMP target genes in efferent neuron subsets.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Drosophila melanogaster/metabolism , Neurons/metabolism , Response Elements , Animals , Bone Morphogenetic Proteins/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation , Signal Transduction , Smad4 Protein/genetics , Smad4 Protein/metabolism
15.
Genome Res ; 30(6): 849-859, 2020 06.
Article in English | MEDLINE | ID: mdl-32580998

ABSTRACT

Coexpression analysis is widely used for inferring regulatory networks, predicting gene function, and interpretation of transcriptome profiling studies, based on methods such as clustering. The majority of such studies use data collected from bulk tissue, where the effects of cellular composition present a potential confound. However, the impact of composition on coexpression analysis has not been studied in detail. Here, we examine this issue for the case of human RNA analysis. Focusing on brain tissue, we found that, for most genes, differences in expression levels across cell types account for a large fraction of the variance of their measured RNA levels (median R 2 = 0.68). We then show that genes that have similar expression patterns across cell types will have correlated RNA levels in bulk tissue, due to the effect of variation in cellular composition. We demonstrate that much of the coexpression and the formation of coexpression clusters can be attributed to this effect for both brain and blood transcriptomes. For brain, we further show how this composition-induced coexpression masks underlying intra-cell-type coexpression observed in single-cell data. An attempt to correct for composition yielded mixed results. Our conclusion is that the dominant coexpression signal in brain, blood, and, likely, other complex tissues can be attributed to cellular compositional effects, rather than intra-cell-type regulatory relationships. These results have implications for the relevance and interpretation of coexpression analysis.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Transcriptome , Blood Cells , Cluster Analysis , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling/methods , Humans , Organ Specificity/genetics , Phenotype
16.
Nat Commun ; 11(1): 2073, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350270

ABSTRACT

Functional variomics provides the foundation for personalized medicine by linking genetic variation to disease expression, outcome and treatment, yet its utility is dependent on appropriate assays to evaluate mutation impact on protein function. To fully assess the effects of 106 missense and nonsense variants of PTEN associated with autism spectrum disorder, somatic cancer and PTEN hamartoma syndrome (PHTS), we take a deep phenotypic profiling approach using 18 assays in 5 model systems spanning diverse cellular environments ranging from molecular function to neuronal morphogenesis and behavior. Variants inducing instability occur across the protein, resulting in partial-to-complete loss-of-function (LoF), which is well correlated across models. However, assays are selectively sensitive to variants located in substrate binding and catalytic domains, which exhibit complete LoF or dominant negativity independent of effects on stability. Our results indicate that full characterization of variant impact requires assays sensitive to instability and a range of protein functions.


Subject(s)
Disease/genetics , Models, Genetic , Mutation, Missense/genetics , PTEN Phosphohydrolase/genetics , Animals , Behavior, Animal , Caenorhabditis elegans/physiology , Cells, Cultured , Dendrites/physiology , Drosophila/genetics , Drosophila/growth & development , Enzyme Assays , HEK293 Cells , Humans , Neoplasms/genetics , Nervous System/growth & development , Phosphorylation , Protein Stability , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/metabolism , Rats, Sprague-Dawley , Saccharomyces cerevisiae/metabolism
17.
Nat Neurosci ; 23(6): 771-781, 2020 06.
Article in English | MEDLINE | ID: mdl-32341540

ABSTRACT

Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting millions of people worldwide and ranking as a leading cause of disability for almost three decades. Past molecular studies of MDD employed bulk homogenates of postmortem brain tissue, which obscures gene expression changes within individual cell types. Here we used single-nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of male individuals with MDD (n = 17) and of healthy controls (n = 17). We identified 26 cellular clusters, and over 60% of these showed differential gene expression between groups. We found that the greatest dysregulation occurred in deep layer excitatory neurons and immature oligodendrocyte precursor cells (OPCs), and these contributed almost half (47%) of all changes in gene expression. These results highlight the importance of dissecting cell-type-specific contributions to the disease and offer opportunities to identify new avenues of research and novel targets for treatment.


Subject(s)
Depressive Disorder, Major/metabolism , High-Throughput Nucleotide Sequencing/methods , Neurons/metabolism , Oligodendrocyte Precursor Cells/metabolism , Prefrontal Cortex/metabolism , Transcriptome , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Gene Regulatory Networks , Humans , Male , Middle Aged , Young Adult
18.
Am J Hum Genet ; 106(2): 143-152, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32032513

ABSTRACT

Advances in genomics have transformed our ability to identify the genetic causes of rare diseases (RDs), yet we have a limited understanding of the mechanistic roles of most genes in health and disease. When a novel RD gene is first discovered, there is minimal insight into its biological function, the pathogenic mechanisms of disease-causing variants, and how therapy might be approached. To address this gap, the Canadian Rare Diseases Models and Mechanisms (RDMM) Network was established to connect clinicians discovering new disease genes with Canadian scientists able to study equivalent genes and pathways in model organisms (MOs). The Network is built around a registry of more than 500 Canadian MO scientists, representing expertise for over 7,500 human genes. RDMM uses a committee process to identify and evaluate clinician-MO scientist collaborations and approve 25,000 Canadian dollars in catalyst funding. To date, we have made 85 clinician-MO scientist connections and funded 105 projects. These collaborations help confirm variant pathogenicity and unravel the molecular mechanisms of RD, and also test novel therapies and lead to long-term collaborations. To expand the impact and reach of this model, we made the RDMM Registry open-source, portable, and customizable, and we freely share our committee structures and processes. We are currently working with emerging networks in Europe, Australia, and Japan to link international RDMM networks and registries and enable matches across borders. We will continue to create meaningful collaborations, generate knowledge, and advance RD research locally and globally for the benefit of patients and families living with RD.


Subject(s)
Disease Models, Animal , Genetic Markers , Rare Diseases/genetics , Rare Diseases/therapy , Registries/standards , Animals , Databases, Factual , Genomics , Humans , Rare Diseases/epidemiology
19.
Proc Natl Acad Sci U S A ; 117(1): 656-667, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31754030

ABSTRACT

A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Cell Adhesion Molecules, Neuronal/genetics , Habituation, Psychophysiologic/genetics , Phenomics/methods , Animals , Animals, Genetically Modified , Autism Spectrum Disorder/physiopathology , Behavior Observation Techniques/methods , Behavior, Animal/physiology , Caenorhabditis elegans , DNA-Binding Proteins/genetics , Disease Models, Animal , Epistasis, Genetic , Humans , Immunoglobulins/genetics , Locomotion/genetics , Membrane Proteins/genetics , Mutation, Missense , Phenotype , Transcription Factors/genetics
20.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31767574

ABSTRACT

While multiple studies have been conducted of gene expression in mouse models of Alzheimer's disease (AD), their findings have not reached a clear consensus and have not accounted for the potentially confounding effects of changes in cellular composition. To help address this gap, we conducted a re-analysis based meta-analysis (mega-analysis) of ten independent studies of hippocampal gene expression in mouse models of AD. We used estimates of cellular composition as covariates in statistical models aimed to identify genes differentially expressed (DE) at either early or late stages of progression. Our analysis revealed changes in gene expression at early phases shared across studies, including dysregulation of genes involved in cholesterol biosynthesis and the complement system. Expression changes at later stages were dominated by cellular compositional effects. Thus, despite the considerable heterogeneity of the mouse models, we identified common patterns that may contribute to our understanding of AD etiology. Our work also highlights the importance of controlling for cellular composition effects in genomics studies of neurodegeneration.


Subject(s)
Alzheimer Disease/genetics , Gene Expression , Transcriptome , Animals , Computational Biology , Disease Models, Animal , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...