Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Brain Behav Immun Health ; 33: 100686, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37767237

ABSTRACT

CNS inflammation, including microglial activation, in response to peripheral infections are known to contribute to the pathology of both familial and sporadic neurodegenerative disease. The relationship between Fused-in-Sarcoma Protein (FUS)-mediated disease in the transgenic FUS[1-359] animals and the systemic inflammatory response have not been explored. Here, we investigated microglial activation, inflammatory gene expression and the behavioural responses to lipopolysaccharide-induced (LPS; 0.1 mg/kg) systemic inflammation in the FUS[1-359] transgenic mice. The pathology of these mice recapitulates the key features of mutant FUS-associated familial frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Here, pre-symptomatic 8-week-old mutant or wild type controls were challenged with LPS or with saline and sucrose intake, novel cage exploration, marble burying and swimming behaviours were analyzed. The level of pro-inflammatory gene expression was also determined, and microglial activation was evaluated. In chronic experiments, to discover whether the LPS challenge would affect the onset of ALS-like paralysis, animals were evaluated for clinical signs from 5 to 7 weeks post-injection. Compared to controls, acutely challenged FUS[1-359]-tg mice exhibited decreased sucrose intake and increased floating behaviours. The FUS[1-359]-tg mice exhibited an increase in immunoreactivity for Iba1-positive cells in the prefrontal cortex and ventral horn of the spinal cord, which was accompanied by increased expression of interleukin-1ß, tumour necrosis factor, cyclooxygenase-(COX)-1 and COX-2. However, the single LPS challenge did not alter the time to development of paralysis in the FUS[1-359]-tg mice. Thus, while the acute inflammatory response was enhanced in the FUS mutant animals, it did not have a lasting impact on disease progression.

2.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511470

ABSTRACT

Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3ß, IL-1ß, and IL-6 and increased serum concentrations of IL-1ß, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.


Subject(s)
Behavior, Animal , Prenatal Exposure Delayed Effects , Mice , Pregnancy , Animals , Humans , Female , Behavior, Animal/physiology , Prenatal Exposure Delayed Effects/pathology , Lipopolysaccharides/toxicity , Glycogen Synthase Kinase 3 beta , Interleukin-6/adverse effects , Cytokines , Disease Models, Animal
3.
Cell Rep ; 42(7): 112815, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459234

ABSTRACT

The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.


Subject(s)
Neuropeptides , Male , Female , Mice , Animals , Orexins , Neuropeptides/pharmacology , Social Interaction , Neurons/physiology , Social Discrimination
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674429

ABSTRACT

Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.


Subject(s)
Depressive Disorder, Major , Humans , Depression , Neuroinflammatory Diseases , Aggression/psychology , Oxidative Stress
5.
Materials (Basel) ; 15(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35269065

ABSTRACT

The optical response of properly excited periodically arranged plasmonic nanostructures is known to demonstrate sharp resonance features associated with high-Q collective modes demanding for various applications in light-matter interaction, filtering and sensing. Meanwhile, practical realization and replication of plasmonic platforms supporting high-Q modes via scalable inexpensive lithography-free approach is still challenging. Here, we justify direct ablation-free irradiation of Si-supported thin Au film by nanojoule-energy femtosecond laser pulses as a single-step and scalable technology for realization of plasmonic metasurfaces supporting collective plasmonic response. Using an adjustable aperture to control and upscale the size of the fabricated nanostructures, nanobumps and nanojets, we demonstrated plasmonic metasurface supporting collective resonances with a moderately high Q-factor (up to 17) and amplitude (up to 45%) within expanded spectral range (1.4-4.5 µm). Vacuum deposition of thin films above the as-fabricated nanostructure arrays was demonstrated to provide fine tuning of the resonance position, also expanding the choice of available materials for realization of plasmonic designs with extended functionality.

6.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216176

ABSTRACT

The phenomenon of individual variability in susceptibility/resilience to stress and depression, in which the hippocampus plays a pivotal role, is attracting increasing attention. We investigated the potential role of hippocampal cyclooxygenase-2 (COX-2), which regulates plasticity, neuroimmune function, and stress responses that are all linked to this risk dichotomy. We used a four-week-long chronic mild stress (CMS) paradigm, in which mice could be stratified according to their susceptibility/resilience to anhedonia, a key feature of depression, to investigate hippocampal expression of COX-2, a marker of microglial activation Iba-1, and the proliferation marker Ki67. Rat exposure, social defeat, restraints, and tail suspension were used as stressors. We compared the effects of treatment with either the selective COX-2 inhibitor celecoxib (30 mg/kg/day) or citalopram (15 mg/kg/day). For the celecoxib and vehicle-treated mice, the Porsolt test was used. Anhedonic (susceptible) but not non-anhedonic (resilient) animals exhibited elevated COX-2 mRNA levels, increased numbers of COX-2 and Iba-1-positive cells in the dentate gyrus and the CA1 area, and decreased numbers of Ki67-positive cells in the subgranular zone of the hippocampus. Drug treatment decreased the percentage of anhedonic mice, normalized swimming activity, reduced behavioral despair, and improved conditioned fear memory. Hippocampal over-expression of COX-2 is associated with susceptibility to stress-induced anhedonia, and its pharmacological inhibition with celecoxib has antidepressant effects that are similar in size to those of citalopram.


Subject(s)
Anhedonia/physiology , Cyclooxygenase 2/metabolism , Hippocampus/metabolism , Stress, Psychological/metabolism , Anhedonia/drug effects , Animals , Antidepressive Agents/pharmacology , Celecoxib/pharmacology , Citalopram/pharmacology , Depression/drug therapy , Depression/metabolism , Hindlimb Suspension/physiology , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological/drug therapy , Swimming/physiology
7.
Psychopharmacology (Berl) ; 239(3): 663-693, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35072761

ABSTRACT

RATIONALE: The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES: To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS: Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS: We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.


Subject(s)
Depression , Stress, Psychological , Animals , Artifacts , Depression/drug therapy , Disease Models, Animal , Rats , Rats, Wistar , Stress, Psychological/drug therapy
8.
Front Nutr ; 8: 661455, 2021.
Article in English | MEDLINE | ID: mdl-33937310

ABSTRACT

Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of "emotional" ultrasound stress (US), mice were subjected to ultrasound frequencies of 16-20 kHz, mimicking rodent sounds of anxiety/despair and "neutral" frequencies of 25-45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.

9.
J Cell Mol Med ; 24(17): 10251-10257, 2020 09.
Article in English | MEDLINE | ID: mdl-32667139

ABSTRACT

Genetic mutations in FUS, a DNA/RNA-binding protein, are associated with inherited forms of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A novel transgenic FUS[1-359]-tg mouse line recapitulates core hallmarks of human ALS in the spinal cord, including neuroinflammation and neurodegeneration, ensuing muscle atrophy and paralysis, as well as brain pathomorphological signs of FTLD. However, a question whether FUS[1-359]-tg mouse displays behavioural and brain pro-inflammatory changes characteristic for the FTLD syndrome was not addressed. Here, we studied emotional, social and cognitive behaviours, brain markers of inflammation and plasticity of pre-symptomatic FUS[1-359]-tg male mice, a potential FTLD model. These animals displayed aberrant behaviours and altered brain expression of inflammatory markers and related pathways that are reminiscent to the FTLD-like syndrome. FTLD-related behavioural and molecular Journal of Cellular and Molecular Medicine features were studied in the pre-symptomatic FUS[1-359]-tg mice that received standard or new ALS treatments, which have been reported to counteract the ALS-like syndrome in the mutants. We used anti-ALS drug riluzole (8 mg/kg/d), or anti-inflammatory drug, a selective blocker of cyclooxygenase-2 (celecoxib, 30 mg/kg/d) for 3 weeks, or a single intracerebroventricular (i.c.v.) infusion of human stem cells (Neuro-Cells, 500 000-CD34+ ), which showed anti-inflammatory properties. Signs of elevated anxiety, depressive-like behaviour, cognitive deficits and abnormal social behaviour were less marked in FUS-tg-treated animals. Applied treatments have normalized protein expression of interleukin-1ß (IL-1ß) in the prefrontal cortex and the hippocampus, and of Iba-1 and GSK-3ß in the hippocampus. Thus, the pre-symptomatic FUS[1-359]-tg mice demonstrate FTLD-like abnormalities that are attenuated by standard and new ALS treatments, including Neuro-Cell preparation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Frontotemporal Lobar Degeneration/drug therapy , Frontotemporal Lobar Degeneration/metabolism , RNA-Binding Protein FUS/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Animals , Behavior, Animal/drug effects , Brain/metabolism , Cyclooxygenase 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mutation/drug effects , Neurons/drug effects , Neurons/metabolism , Social Behavior , Spinal Cord/drug effects , Spinal Cord/metabolism
10.
Neurobiol Learn Mem ; 172: 107227, 2020 07.
Article in English | MEDLINE | ID: mdl-32325189

ABSTRACT

Deficient learning and memory are well-established pathophysiologic features of depression, however, mechanisms of the enhanced learning of aversive experiences associated with this disorder are poorly understood. Currently, neurobiological mechanisms of enhanced retention of aversive memories during depression, and, in particular, their relation to neuroinflammation are unclear. As the association between major depressive disorder and inflammation has been recognized for some time, we aimed to address whether neuroinflammatory changes are involved in enhanced learning of adversity in a depressive state. To study this question, we used a recently described mouse model of enhanced contextual conditioning of aversive memories, the modified forced swim model (modFST). In this model, the classic two-day forced swim is followed by an additional delayed session on Day 5, where increased floating behaviour and upregulated glycogen synthase kinase-3 (GSK-3) are context-dependent. Here, increased time spent floating on Day 5, a parameter of enhanced learning of the adverse context, was accompanied by hypercorticosteronemia, increased gene expression of GSK-3α, GSK-3ß, c-Fos, cyclooxygenase-1 (COX-1) and pro-inflammatory cytokines interleukin-1 beta (IL-1ß), tumor necrosis factor (TNF), and elevated concentrations of protein carbonyl, a marker of oxidative stress, in the prefrontal cortex and hippocampus. There were significant correlations between cytokine levels and GSK-3ß gene expression. Two-week administration of compounds with antidepressant properties, imipramine (7 mg/kg/day) or thiamine (vitamin B1; 200 mg/kg/day) ameliorated most of the modFST-induced changes. Thus, enhanced learning of adverse memories is associated with pro-inflammatory changes that should be considered for optimizing pharmacotherapy of depression associated with enhanced learning of aversive memories.


Subject(s)
Antidepressive Agents, Tricyclic/administration & dosage , Brain/metabolism , Depression/metabolism , Encephalitis/metabolism , Imipramine/administration & dosage , Learning/physiology , Memory/physiology , Animals , Brain/drug effects , Depression/complications , Depression/prevention & control , Disease Models, Animal , Encephalitis/etiology , Encephalitis/prevention & control , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL
11.
Stress ; 23(4): 481-495, 2020 07.
Article in English | MEDLINE | ID: mdl-31900023

ABSTRACT

The modern lifestyle is associated with exposure to "psychological" or "emotional" stress. A growing portion of the population is exposed to emotional stress that results in a high incidence of anxiety disorders, a serious social problem. With this rise, there is a need for understanding the neurobiological causes of stress-induced anxiety and to offer safe remedies for this condition. Side effects of existing pharmaceuticals necessitate the search for alternatives. Having fewer adverse effects than classic remedies, natural extract-based therapies can be a promising solution. Here, we applied a model of emotional stress in BALB/c mice using ultrasound exposure to evoke the signs of anxiety-like behavior. We examined the behavioral and molecular impact of ultrasound and administration of herbal antioxidant/anti-inflammatory treatment (HAT) on AMPA receptor expression, markers of plasticity, inflammation and oxidative stress. A 3-week ultrasound exposure increased scores of anxiety-like behaviors in the standard tests and altered hippocampal expression as well as internalization of AMPA receptor subunits GluA1-A3. Concomitant treatment with HAT has prevented increases of anxiety-like behaviors and other behavioral changes, normalized hippocampal malondialdehyde content, GSK3ß and pro-inflammatory cytokines Il-1ß and Il-6, and the number of Ki67-positive cells. Levels of malondialdehyde, a common measure of oxidative stress, significantly correlated with the investigated end-points in stressed, but not in non-stressed animals. Our results emphasize the role of oxidative stress in neurobiological abnormalities associated with experimentally induced condition mimicking emotional stress in rodents and highlight the potential therapeutic use of anti-oxidants like herbal compositions for management of stress-related emotional disturbances within the community.


Subject(s)
Antioxidants , Stress, Psychological , Animals , Anti-Inflammatory Agents , Antioxidants/pharmacology , Anxiety , Behavior, Animal , Brain/diagnostic imaging , Hippocampus , Mice , Mice, Inbred BALB C
12.
CNS Neurosci Ther ; 26(5): 504-517, 2020 05.
Article in English | MEDLINE | ID: mdl-31867846

ABSTRACT

AIMS: Mutations in DNA/RNA-binding factor (fused-in-sarcoma) FUS and superoxide dismutase-1 (SOD-1) cause amyotrophic lateral sclerosis (ALS). They were reproduced in SOD-1-G93A (SOD-1) and new FUS[1-359]-transgenic (FUS-tg) mice, where inflammation contributes to disease progression. The effects of standard disease therapy and anti-inflammatory treatments were investigated using these mutants. METHODS: FUS-tg mice or controls received either vehicle, or standard ALS treatment riluzole (8 mg/kg/day), or anti-inflammatory drug a selective blocker of cyclooxygenase-2 celecoxib (30 mg/kg/day) for six weeks, or a single intracerebroventricular (i.c.v.) infusion of Neuro-Cells (a preparation of 1.39 × 106 mesenchymal and hemopoietic human stem cells, containing 5 × 105 of CD34+ cells), which showed anti-inflammatory properties. SOD-1 mice received i.c.v.-administration of Neuro-Cells or vehicle. RESULTS: All FUS-tg-treated animals displayed less marked reductions in weight gain, food/water intake, and motor deficits than FUS-tg-vehicle-treated mice. Neuro-Cell-treated mutants had reduced muscle atrophy and lumbar motor neuron degeneration. This group but not celecoxib-FUS-tg-treated mice had ameliorated motor performance and lumbar expression of microglial activation marker, ionized calcium-binding adapter molecule-1 (Iba-1), and glycogen-synthase-kinase-3ß (GSK-3ß). The Neuro-Cells-treated-SOD-1 mice showed better motor functions than vehicle-treated-SOD-1 group. CONCLUSION: The neuropathology in FUS-tg mice is sensitive to standard ALS treatments and Neuro-Cells infusion. The latter improves motor outcomes in two ALS models possibly by suppressing microglial activation.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Anti-Inflammatory Agents/administration & dosage , Hematopoietic Stem Cell Transplantation/methods , Inflammation Mediators/antagonists & inhibitors , Motor Skills Disorders/therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , Inflammation Mediators/metabolism , Injections, Intraventricular/methods , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Motor Skills Disorders/genetics , Motor Skills Disorders/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Treatment Outcome
13.
Nanomaterials (Basel) ; 10(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878209

ABSTRACT

We report an easy-to-implement device for surface-enhanced Raman scattering (SERS)-based detection of various analytes dissolved in water droplets at trace concentrations. The device combines an analyte-enrichment system and SERS-active sensor site, both produced via inexpensive and high-performance direct femtosecond (fs)-laser printing. Fabricated on a surface of water-repellent polytetrafluoroethylene substrate as an arrangement of micropillars, the analyte-enrichment system supports evaporating water droplet in the Cassie-Baxter superhydrophobic state, thus ensuring delivery of the dissolved analyte molecules towards the hydrophilic SERS-active site. The efficient pre-concentration of the analyte onto the sensor site based on densely arranged spiky plasmonic nanotextures results in its subsequent label-free identification by means of SERS spectroscopy. Using the proposed device, we demonstrate reliable SERS-based fingerprinting of various analytes, including common organic dyes and medical drugs at ppb concentrations. The proposed device is believed to find applications in various areas, including label-free environmental monitoring, medical diagnostics, and forensics.

14.
Acta Neurobiol Exp (Wars) ; 79(3): 232-237, 2019.
Article in English | MEDLINE | ID: mdl-31587015

ABSTRACT

Emotional stress is considered a serious pathogenetic factor of depression. In this study an ultrasound model of emotional stress developed in our laboratory was applied. It is characterized by the use of ultrasound as the stressor agent. Animals are triggered not by any organic or physical disturbances but by the perception of adverse information. This type of stress can induce depressive-like behavioral changes in rodents, manifested by decreased sucrose preference and increased time of immobility in a forced swim test. Ultrasound stress also increased the levels of oxidative stress markers. This is important, as stress has an established association with increased oxidative processes in the central nervous system. Total glutathione and carbonyl protein content were selected as relevant brain markers, as glutathione plays a critical role in cellular defensive mechanisms during oxidative stress and the level of protein carbonyls can be a measure of global protein oxidation. We demonstrated that two weeks of chronic exposure to ultrasound was enough to cause depressive-like behavioral changes in rats. Increased levels of oxidative stress markers in the hippocampus and prefrontal cortex were also observed after two weeks of such stress. The current study has two goals: the first is to study the relationship of depression and oxidative stress; the second is an additional validation of our approach to modeling stress­induced depressive-like states in rats. The present data further support the validity of the ultrasound model by expanding information related to the influence of ultrasound stress on behavioral and physiological parameters, which are of great importance in the development of stress-induced depression. A time correlation between the onset of symptoms and a change in the level of oxidative stress markers in the brain is also demonstrated.


Subject(s)
Behavior, Animal/physiology , Depression/physiopathology , Oxidative Stress/physiology , Stress, Psychological/physiopathology , Animals , Depression/metabolism , Depressive Disorder/physiopathology , Disease Models, Animal , Glutathione/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Prefrontal Cortex/physiopathology , Rats
15.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547003

ABSTRACT

We demonstrate a multi-purpose plasmonic sensor based on a nanovoid array fabricated via inexpensive and highly-reproducible direct femtosecond laser patterning of thin glass-supported Au films. The proposed nanovoid array exhibits near-IR surface plasmon (SP) resonances, which can be excited under normal incidence and optimised for specific applications by tailoring the array periodicity, as well as the nanovoid geometric shape. The fabricated SP sensor offers competitive sensitivity of ≈ 1600 nm/RIU at a figure of merit of 12 in bulk refractive index tests, as well as allows for identification of gases and ultra-thin analyte layers, making the sensor particularly useful for common bioassay experiments. Moreover, isolated nanovoids support strong electromagnetic field enhancement at lattice SP resonance wavelength, allowing for label-free molecular identification via surface-enhanced vibration spectroscopy.

16.
Phys Rev Lett ; 122(23): 237001, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31298885

ABSTRACT

We report the first observation of superconductivity in a heterostructure consisting of an insulating ferroelectric film (Ba_{0.8}Sr_{0.2}TiO_{3}) grown on an insulating parent compound of La_{2}CuO_{4} with [001] orientation. The heterostructure was prepared by magnetron sputtering on a nonatomically flat surface with inhomogeneities of the order of 1-2 nm. The measured superconducting transition temperature T_{c} is about 30 K. We have shown that superconductivity is confined near the interface region. Application of a weak magnetic field perpendicular to the interface leads to the appearance of the finite resistance. That confirms the quasi-two-dimensional nature of the superconductive state. The proposed concept promises ferroelectrically controlled interface superconductivity which offers the possibility of novel design of electronic devices.

17.
Neuropharmacology ; 156: 107543, 2019 09 15.
Article in English | MEDLINE | ID: mdl-30817932

ABSTRACT

The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community. This article is part of the Special Issue entitled 'Current status of the neurobiology of aggression and impulsivity'.


Subject(s)
Aggression/drug effects , Aggression/physiology , Antioxidants/administration & dosage , Neuronal Plasticity/drug effects , Oxidative Stress/drug effects , Receptors, AMPA/metabolism , Thiamine/analogs & derivatives , Thiamine/administration & dosage , Aggression/radiation effects , Animals , Brain/drug effects , Brain/metabolism , Brain/radiation effects , Depression/physiopathology , Male , Mice, Inbred BALB C , Neuronal Plasticity/radiation effects , Oxidative Stress/radiation effects , Receptors, AMPA/radiation effects , Receptors, Serotonin/metabolism , Receptors, Serotonin/radiation effects , Ultrasonic Waves
18.
Article in English | MEDLINE | ID: mdl-30472146

ABSTRACT

Emotional stress is a form of stress evoked by processing negative mental experience rather than an organic or physical disturbance and is a frequent cause of neuropsychiatric pathologies, including depression. Susceptibility to emotional stress is commonly regarded as a human-specific trait that is challenging to model in other species. Recently, we showed that a 3-week-long exposure to ultrasound of unpredictable alternating frequencies within the ranges of 20-25 kHz and 25-45 kHz can induce depression-like characteristics in laboratory mice and rats. In an anti-depressant sensitive manner, exposure decreases sucrose preference, elevates behavioural despair, increases aggression, and alters serotonin-related gene expression. To further investigate this paradigm, we studied depression/distress-associated markers of neuroinflammation, neuroplasticity, oxidative stress and the activity of glycogen synthase kinase-3 (GSK-3) isoforms in the hippocampus of male mice. Stressed mice exhibited a decreased density of Ki67-positive and DCX-positive cells in the subgranular zone of hippocampus, and altered expression of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and anti-apoptotic protein kinase B phosphorylated at serine 473 (AktpSer473). The mice also exhibited increased densities of Iba-1-positive cells, increased oxidative stress, increased levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) in the hippocampus and plasma, and elevated activity of GSK-3 isoforms. Together, the results of our investigation have revealed that unpredictable alternating ultrasound evokes behavioural and molecular changes that are characteristic of the depressive syndrome and validates this new and simple method of modeling emotional stress in rodents.


Subject(s)
Depressive Disorder/physiopathology , Hippocampus/physiopathology , Inflammation/physiopathology , Neuronal Plasticity/physiology , Stress, Psychological/physiopathology , Acoustic Stimulation/methods , Animals , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Doublecortin Protein , Glycogen Synthase Kinase 3/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Isoenzymes/metabolism , Male , Mice, Inbred BALB C , Oxidative Stress/physiology , Receptor, trkB/metabolism , Ultrasonics
19.
Behav Brain Res ; 335: 122-127, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28803855

ABSTRACT

Glycogen synthase kinase 3 (GSK3) has been linked to the mechanisms of stress, mood regulation, and the effects of antidepressants. The functions of the GSK3ß isoform have been extensively investigated, but little is known about the α-isoform, although they may functionally related. In a recently established modified swim test with a third delayed swim exposure, brain GSK3ß mRNA expression positively correlated with floating behaviour on the third test. A two-week-long pretreatment regime with imipramine (7.5mg/kg/day) or thiamine (200mg/kg/day), which is known to have antidepressant properties, reduced the GSK3ß over-expression and decreased floating behaviour on Day 5. GSK3α mRNA levels were measured in the hippocampus and prefrontal cortex on Days 1, 2 and 5. GSK3α expression was decreased in the prefrontal cortex on Day 2 and increased on Day 5. In this model, GSK3α mRNA changes were prevented by imipramine or thiamine treatment. There was a significant correlation between the expression of the two isoforms in the prefrontal cortex on Day 2 in untreated group. These results provide the first evidence for the potential involvement of GSK3α in depressive-like behaviours and as a target of anti-depressant therapy. Furthermore, the correlations suggest some cross-talk may exist between the two GSK3 isoforms.


Subject(s)
Antidepressive Agents/pharmacology , Brain/enzymology , Depression/drug therapy , Depression/enzymology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Depression/metabolism , Depression/pathology , Disease Models, Animal , Imipramine/pharmacology , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Protein Isoforms , Signal Transduction/drug effects , Thiamine/pharmacology , Up-Regulation
20.
Mol Cell Neurosci ; 82: 126-136, 2017 07.
Article in English | MEDLINE | ID: mdl-28506637

ABSTRACT

Thiamine is essential for normal brain function and its deficiency causes metabolic impairment, specific lesions, oxidative damage and reduced adult hippocampal neurogenesis (AHN). Thiamine precursors with increased bioavailability, especially benfotiamine, exert neuroprotective effects not only for thiamine deficiency (TD), but also in mouse models of neurodegeneration. As it is known that AHN is impaired by stress in rodents, we exposed C57BL6/J mice to predator stress for 5 consecutive nights and studied the proliferation (number of Ki67-positive cells) and survival (number of BrdU-positive cells) of newborn immature neurons in the subgranular zone of the dentate gyrus. In stressed mice, the number of Ki67- and BrdU-positive cells was reduced compared to non-stressed animals. This reduction was prevented when the mice were treated (200mg/kg/day in drinking water for 20days) with thiamine or benfotiamine, that were recently found to prevent stress-induced behavioral changes and glycogen synthase kinase-3ß (GSK-3ß) upregulation in the CNS. Moreover, we show that thiamine and benfotiamine counteract stress-induced bodyweight loss and suppress stress-induced anxiety-like behavior. Both treatments induced a modest increase in the brain content of free thiamine while the level of thiamine diphosphate (ThDP) remained unchanged, suggesting that the beneficial effects observed are not linked to the role of this coenzyme in energy metabolism. Predator stress increased hippocampal protein carbonylation, an indicator of oxidative stress. This effect was antagonized by both thiamine and benfotiamine. Moreover, using cultured mouse neuroblastoma cells, we show that in particular benfotiamine protects against paraquat-induced oxidative stress. We therefore hypothesize that thiamine compounds may act by boosting anti-oxidant cellular defenses, by a mechanism that still remains to be unveiled. Our study demonstrates, for the first time, that thiamine and benfotiamine prevent stress-induced inhibition of hippocampal neurogenesis and accompanying physiological changes. The present data suggest that thiamine precursors with high bioavailability might be useful as a complementary therapy in several neuropsychiatric disorders.


Subject(s)
Hippocampus/drug effects , Neurogenesis/drug effects , Thiamine Pyrophosphate/pharmacology , Thiamine/analogs & derivatives , Thiamine/metabolism , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Disease Models, Animal , Glycogen Synthase Kinase 3/drug effects , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Male , Mice, Inbred C57BL , Thiamine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL