Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 23(8): e13718, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35829667

ABSTRACT

Qualified medical physicists (QMPs) are in a unique position to influence the creation and application of key performance indicators (KPIs) across diverse practices in health care. Developing KPIs requires the involvement of stakeholders in the area of interest. Fundamentally, KPIs should provide actionable information for the stakeholders using or viewing them. During development, it is important to strongly consider the underlying data collection for the KPI, making it automatic whenever possible. Once the KPI has been validated, it is important to setup a review cycle and be prepared to adjust the underlying data or action levels if the KPI is not performing as intended. Examples of specific KPIs for QMPs of common scopes of practice are provided to act as models to aid in implementation. KPIs are a useful tool for QMPs, regardless of the scope of practice or practice environment, to enhance the safety and quality of care being delivered.


Subject(s)
Quality Indicators, Health Care , Humans
2.
J Appl Clin Med Phys ; 19(6): 11-25, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30338913

ABSTRACT

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline (MPPG) represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiation requires specific training, skills, and techniques as described in each document. As the review of the previous version of AAPM Professional Policy (PP)-17 (Scope of Practice) progressed, the writing group focused on one of the main goals: to have this document accepted by regulatory and accrediting bodies. After much discussion, it was decided that this goal would be better served through a MPPG. To further advance this goal, the text was updated to reflect the rationale and processes by which the activities in the scope of practice were identified and categorized. Lastly, the AAPM Professional Council believes that this document has benefitted from public comment which is part of the MPPG process but not the AAPM Professional Policy approval process. The following terms are used in the AAPM's MPPGs: Must and Must Not: Used to indicate that adherence to the recommendation is considered necessary to conform to this practice guideline. Should and Should Not: Used to indicate a prudent practice to which exceptions may occasionally be made in appropriate circumstances.


Subject(s)
Health Physics/standards , Practice Guidelines as Topic/standards , Societies, Scientific/standards , Humans , Radiation Dosage
4.
J Appl Clin Med Phys ; 18(5): 195-209, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28834214

ABSTRACT

PURPOSE: The main aim of this study is to validate the Acuros XB dose calculation algorithm for a Varian Clinac iX linac in our clinics, and subsequently compare it with the wildely used AAA algorithm. METHODS AND MATERIALS: The source models for both Acuros XB and AAA were configured by importing the same measured beam data into Eclipse treatment planning system. Both algorithms were validated by comparing calculated dose with measured dose on a homogeneous water phantom for field sizes ranging from 6 cm × 6 cm to 40 cm × 40 cm. Central axis and off-axis points with different depths were chosen for the comparison. In addition, the accuracy of Acuros was evaluated for wedge fields with wedge angles from 15 to 60°. Similarly, variable field sizes for an inhomogeneous phantom were chosen to validate the Acuros algorithm. In addition, doses calculated by Acuros and AAA at the center of lung equivalent tissue from three different VMAT plans were compared to the ion chamber measured doses in QUASAR phantom, and the calculated dose distributions by the two algorithms and their differences on patients were compared. Computation time on VMAT plans was also evaluated for Acuros and AAA. Differences between dose-to-water (calculated by AAA and Acuros XB) and dose-to-medium (calculated by Acuros XB) on patient plans were compared and evaluated. RESULTS: For open 6 MV photon beams on the homogeneous water phantom, both Acuros XB and AAA calculations were within 1% of measurements. For 23 MV photon beams, the calculated doses were within 1.5% of measured doses for Acuros XB and 2% for AAA. Testing on the inhomogeneous phantom demonstrated that AAA overestimated doses by up to 8.96% at a point close to lung/solid water interface, while Acuros XB reduced that to 1.64%. The test on QUASAR phantom showed that Acuros achieved better agreement in lung equivalent tissue while AAA underestimated dose for all VMAT plans by up to 2.7%. Acuros XB computation time was about three times faster than AAA for VMAT plans, and computation time for other plans will be discussed at the end. Maximum difference between dose calculated by AAA and dose-to-medium by Acuros XB (Acuros_Dm,m ) was 4.3% on patient plans at the isocenter, and maximum difference between D100 calculated by AAA and by Acuros_Dm,m was 11.3%. When calculating the maximum dose to spinal cord on patient plans, differences between dose calculated by AAA and Acuros_Dm,m were more than 3%. CONCLUSION: Compared with AAA, Acuros XB improves accuracy in the presence of inhomogeneity, and also significantly reduces computation time for VMAT plans. Dose differences between AAA and Acuros_Dw,m were generally less than the dose differences between AAA and Acuros_Dm,m . Clinical practitioners should consider making Acuros XB available in clinics, however, further investigation and clarification is needed about which dose reporting mode (dose-to-water or dose-to-medium) should be used in clinics.


Subject(s)
Algorithms , Phantoms, Imaging , Radiotherapy Dosage , Humans , Particle Accelerators , Photons , Radiometry , Radiotherapy Planning, Computer-Assisted
5.
J Appl Clin Med Phys ; 17(4): 3-14, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27455473

ABSTRACT

The goal of this report is to provide a framework from which an institution can develop a competency and credentialing program. It is not intended to be adopted as written, but rather as a list of suggestions from which the institution develops their program. A clear distinction should be made between the initial evaluation of the competency of new staff (credentialing) and the ongoing verification of the competency of existing staff. Furthermore, whenever new technologies are imple-mented, the entire staff would be subject to the credentialing process. Competencies involve the ongoing verification of the performance of a procedure according to the established policies and procedures at a facility. This can be done by audits of work product, direct observation of performance, self-evaluation, or testing. PACS number(s): 87.10.-e, 87.90.+y


Subject(s)
Clinical Competence/standards , Evaluation Studies as Topic , Health Physics/standards , Practice Guidelines as Topic/standards , Quality Assurance, Health Care/standards , Radiation Oncology , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...