Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144910

ABSTRACT

Polyethylene degradation has a significant ecological impact but is also economically beneficial because it generates fuels and useful chemical products. Our study mainly describes the cleavage of C-C and C-H bonds when polyethylene (dispersed in 1-octadecene) was low-temperature heat-treated in two steps, at 180 and 250 °C, for 24 h for each step. Finally, it was converted to a mixture of the precursors of gasoline and diesel oil with a trace amount of wax. A series of reactions resulted in cracking, dehydrogenation and oxidation, hence producing polycarboxylic acids and saturated and unsaturated hydrocarbons. ESI-MS analysis revealed that mixed oil consisted of low carbon number hydrocarbons and their derivatives of carboxylic acids, with the carbon number ranging from C-6 to C-18. In the trace amount of wax, complicated carboxylic acids and hydrocarbons with carbon number C-22 to C-58 were also identified. FT-IR analysis further confirmed the presence of carboxylic acid derivatives and double bonds in the degradation products. γ-Al2O3 nanorods effectively catalyzed the degradation process by enhancing the C-C chain length in the products. Lewis acid (Al) and Lewis base (oxygen) in the γ-Al2O3 induced ionic character of the C-C bond chain, which led to the efficient cracking of the C-C bond. Poor shielding effect, smaller atomic size and greater ionization energy made Ga a stronger Lewis acid compared to Al; hence, Ga-doped γ-Al2O3 catalyzed the degradation process even more effectively.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957057

ABSTRACT

Uniform-size rutile TiO2 microrods were synthesized by simple molten-salt method with sodium chloride as reacting medium and different kinds of sodium phosphate salts as growth control additives to control the one-dimensional (1-D) crystal growth of particles. The effect of rutile and anatase ratios as a precursor was monitored for rod growth formation. Apart from uniform rod growth study, optical properties of rutile microrods were observed by UV-visible and photoluminescence (PL) spectroscopy. TiO2 materials with anatase and rutile phase show PL emission due to self-trapped exciton. It has been observed that synthesized rutile TiO2 rods show various PL emission peaks in the range of 400 to 900 nm for 355 nm excitation wavelengths. All PL emission appeared due to the oxygen vacancy present inside rutile TiO2 rods. The observed PL near the IR range (785 and 825 nm) was due to the formation of a self-trapped hole near to the surface of (110) which is the preferred orientation plane of synthesized rutile TiO2 microrods.

3.
Sci Rep ; 11(1): 20594, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663873

ABSTRACT

Syntheses of Nd2Fe14B magnetic powder by conventional method is a complicated multi-step process, which produces harmful pollutants and consumes a huge amount of energy and resources. Herein we report a simple chemical route for the preparation of (Nd-Pr)2Fe14B magnetic powder using monazite concentrate as a precursor. Th, U, Sm, and La impurities were removed from monazite leachate by roasting, solvent extraction and leaching the concentrate. Purified leachate consisting of Nd and Pr Chlorides was added to the FeCl3 solution, and the solution produced was co-precipitated with NaOH. RE and Fe hydroxide precipitates were converted to the oxides by annealing at 700 °C. Boric acid and CaH2 were added in the RE and Fe oxides produced, and this mixture was reduced and diffused to (Nd-Pr)2Fe14B. Magnetic properties of the (Nd-Pr)2Fe14B produced were enhanced by introducing antiferromagnetic coupling, induced by Dy addition and efficient removal of CaO byproduct through ball milling in ethanol which increased the BHmax from 3.9 to 11.45 MGOe. Process reported is energy efficient, environment-friendly, time saving and low-cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...