Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14087, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640720

ABSTRACT

We evaluate the efficacy of antimicrobial Photodynamic Therapy (APDT) for inactivating a variety of antibiotic-resistant clinical strains from diabetic foot ulcers. Here we are focused on APDT based on organic light-emitting diodes (OLED). The wound swabs from ten patients diagnosed with diabetic foot ulcers were collected and 32 clinical strains comprising 22 bacterial species were obtained. The isolated strains were identified with the use of mass spectrometry coupled with a protein profile database and tested for antibiotic susceptibility. 74% of isolated bacterial strains exhibited adaptive antibiotic resistance to at least one antibiotic. All strains were subjected to the APDT procedure using an OLED as a light source and 16 µM methylene blue as a photosensitizer. APDT using the OLED led to a large reduction in all cases. For pathogenic bacteria, the reduction ranged from 1.1-log to > 8 log (Klebsiella aerogenes, Enterobacter cloaca, Staphylococcus hominis) even for high antibiotic resistance (MRSA 5-log reduction). Opportunistic bacteria showed a range from 0.4-log reduction for Citrobacter koseri to > 8 log reduction for Kocuria rhizophila. These results show that OLED-driven APDT is effective against pathogens and opportunistic bacteria regardless of drug resistance.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus , Diabetic Foot , Photochemotherapy , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Diabetic Foot/drug therapy , Enterobacter
2.
Chem Soc Rev ; 52(5): 1697-1722, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36779328

ABSTRACT

Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.


Subject(s)
Anti-Infective Agents , Photochemotherapy , Reactive Oxygen Species , Photochemotherapy/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria
3.
ACS Appl Mater Interfaces ; 14(35): 40200-40213, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36017993

ABSTRACT

The need for efficient probing, sensing, and control of the bioactivity of biomolecules (e.g., albumins) has led to the engineering of new fluorescent albumins' markers fulfilling very specific chemical, physical, and biological requirements. Here, we explore acetone-derived polymer dots (PDs) as promising candidates for albumin probes, with special attention paid to their cytocompatibility, two-photon absorption properties, and strong ability to non-destructively interact with serum albumins. The PDs show no cytotoxicity and exhibit high photostability. Their pronounced green fluorescence is observed upon both one-photon excitation (OPE) and two-photon excitation (TPE). Our studies show that both OPE and TPE emission responses of PDs are proteinaceous environment-sensitive. The proteins appear to constitute a matrix for the dispersion of fluorescent PDs, limiting both their aggregation and interactions with the aqueous environment. It results in a large enhancement of PD fluorescence. Meanwhile, the PDs do not interfere with the secondary protein structures of albumins, nor do they induce their aggregation, enabling the PD candidates to be good nanomarkers for non-destructive probing and sensing of albumins.


Subject(s)
Photons , Polymers , Albumins , Fluorescence , Fluorescent Dyes/chemistry
4.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34769298

ABSTRACT

Streptomyces bacteria produce a plethora of secondary metabolites including the majority of medically important antibiotics. The onset of secondary metabolism is correlated with morphological differentiation and controlled by a complex regulatory network involving numerous regulatory proteins. Control over these pathways at the molecular level has a medical and industrial importance. Here we describe a GntR-like DNA binding transcription factor SCO3932, encoded within an actinomycete integrative and conjugative element, which is involved in the secondary metabolite biosynthesis regulation. Affinity chromatography, electrophoresis mobility shift assay, footprinting and chromatin immunoprecipitation experiments revealed, both in vitro and in vivo, SCO3932 binding capability to its own promoter region shared with the neighboring gene SCO3933, as well as promoters of polyketide metabolite genes, such as cpkD, a coelimycin biosynthetic gene, and actII-orf4-an activator of actinorhodin biosynthesis. Increased activity of SCO3932 target promoters, as a result of SCO3932 overproduction, indicates an activatory role of this protein in Streptomyces coelicolor A3(2) metabolite synthesis pathways.


Subject(s)
Actinobacteria/genetics , Biosynthetic Pathways , Streptomyces/growth & development , Transcription Factors/genetics , Bacterial Proteins/genetics , Chromatin Immunoprecipitation , Chromatography, Affinity , Cloning, Molecular , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Secondary Metabolism , Streptomyces/genetics
5.
Front Microbiol ; 11: 606185, 2020.
Article in English | MEDLINE | ID: mdl-33281805

ABSTRACT

The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 µM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications.

6.
Appl Microbiol Biotechnol ; 103(16): 6423-6434, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31250060

ABSTRACT

Despite being a yellow pigment visible to the human eye, coelimycin (CPK) remained to be an undiscovered secondary metabolite for over 50 years of Streptomyces research. Although the function of this polyketide is still unclear, we now know that its "cryptic" nature is attributed to a very complex and precise mechanism of cpk gene cluster regulation in the model actinomycete S. coelicolor A3(2). It responds to the stringent culture density and timing of the transition phase by the quorum-sensing butanolide system and to the specific nutrient availability/uptake signals mediated by the global (pleiotropic) regulators; many of which are two-component signal transduction systems. The final effectors of this regulation cascade are predicted to be two cluster-situated Streptomyces antibiotic regulatory proteins (SARPs) putatively activating the expression of type I polyketide synthase (PKS I) genes. After its synthesis, unstable, colorless antibiotic coelimycin A reacts with specific compounds in the medium losing its antibacterial properties and giving rise to yellow coelimycins P1 and P2. Here we review the current knowledge on coelimycin synthesis regulation in Streptomyces coelicolor A3(2). We focus on the regulatory feedback loop which interconnects the butanolide system with other cpk cluster-situated regulators. We also present the effects exerted on cpk genes expression by the global, pleiotropic regulators, and the regulatory connections between cpk and other biosynthetic gene clusters.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biosynthetic Pathways/genetics , Gene Expression Regulation, Bacterial , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism
7.
Adv Clin Exp Med ; 26(7): 1069-1075, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29211353

ABSTRACT

BACKGROUND: Bladder cancer (BC) is recognized as environmentally related. The interaction of environmental exposure to chemicals and genetic susceptibility seem to play important roles in BC development. In order to improve diagnosis and the recognition of BC risk, a group of markers which combine genetic susceptibility with detoxification and nuclear matrix protein (NMP22) is proposed. OBJECTIVES: The aim of the study was to examine the utility of nuclear matrix protein (NMP22) as a diagnostic marker in BC in genetic susceptibility (NAT2 slow acetylators) combined with detoxification abilities (glutathione S-transferase GST and isoenzyme GST-π). MATERIAL AND METHODS: The NMP22 level in urine, N-acetyltransferase 2 (NAT2) genotype and GST activity in hemolysate blood, as well as isoenzyme GST-π level, were determined in the urine and serum of 43 patients with BC and from 25 non-cancer controls. NMP22 and isoenzyme GST-π levels were measured by ELISA. The NAT2 genotype was examined in DNA isolated from whole blood using the PCR (Polymerase Chain Reaction) technique, while the activity of GST was determined with the spectrophotometric method. RESULTS: In the BC group, NMP22 (p = 0.005) concentration, GST-π (p = 0.003) in urine and GST (p = 0.009) activity in blood were statistically significantly higher than in the healthy controls. The majority of BC patients were slow acetylators (NAT2 genotype). A correlation between the level of nuclear matrix protein NMP22 and GST was found in all BC group (p = 0.007) and also slow acetylators (p = 0.0147). CONCLUSIONS: The results support the utility of a marker combination, which covers the genetic susceptibility to chemicals with the level of detoxification and nuclear matrix protein in BC patients. A relationship between NMP22 level in urine, GST level in blood and NAT2 genotype was observed. Also the isoenzyme GST-π in urine seems useful as a marker of BC.


Subject(s)
Biomarkers, Tumor/analysis , Nuclear Proteins/analysis , Urinary Bladder Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Arylamine N-Acetyltransferase/genetics , Female , Genetic Predisposition to Disease , Genotype , Glutathione S-Transferase pi/analysis , Humans , Male , Middle Aged , Urinary Bladder Neoplasms/chemically induced
8.
Biotechnol Lett ; 25(20): 1717-21, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14626414

ABSTRACT

A cheap value-added product, the protein fraction of barley spent grains is proposed as a source of a potential and economical cultivation medium. We showed that medium composed of protein fraction extract allows the isolation of actinobacteria, especially Streptomyces, from soil samples, and enhances the sporulation. It was used for the screening and production of the biologically active substances from actinobacteria.


Subject(s)
Actinobacteria/growth & development , Actinobacteria/metabolism , Cell Culture Techniques/methods , Hordeum/metabolism , Plant Proteins , Refuse Disposal/methods , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Actinobacteria/classification , Actinobacteria/isolation & purification , Biodegradation, Environmental , Culture Media/chemistry , Culture Media/metabolism , Industrial Waste/prevention & control , Plant Extracts/metabolism , Species Specificity , Spores, Bacterial/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...