Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ann Biomed Eng ; 49(9): 2566-2578, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34244907

ABSTRACT

White blood cell (WBC) and neutrophil counts are important laboratory tests used by clinicians to assess a variety of conditions. However, current methods to measure WBC and neutrophil counts are difficult to perform at the point of care, being either cost or labor prohibitive. To meet this need, we developed the LeukoScope: a portable, imaging-based system to measure WBC and neutrophil counts from a drop of blood. Here, we present the performance of the LeukoScope in 136 pediatric and 164 neonatal subjects at a central hospital in Malawi. For pediatric patients, 95.4, 66.7, and 80.0% of samples with normal, low, and high WBC counts, respectively, were correctly identified, and 88.6, 100.0, and 89.3% of samples with normal, low, and high neutrophil counts, respectively, were correctly identified. Accuracy was lower overall for neonatal samples; 92.1, 64.3, and 26.7% of samples with normal, low, and high WBC counts, respectively, were correctly identified, and 73.2 and 78.6% of samples with normal and high neutrophil counts, respectively, were correctly identified. Results of this study show that the LeukoScope can help meet need for point-of-care measurement of WBC counts in pediatric patients and highlight the challenges of point-of-care assessment of WBC counts in neonatal patients.


Subject(s)
Leukocyte Count , Point-of-Care Systems , Adolescent , Algorithms , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Leukocytes , Malawi
2.
Transl Vis Sci Technol ; 8(3): 44, 2019 May.
Article in English | MEDLINE | ID: mdl-31259089

ABSTRACT

PURPOSE: Retinal angiography evaluates retinal and choroidal perfusion and vascular integrity and is used to manage many ophthalmic diseases, such as age-related macular degeneration. The most common method, fluorescein angiography (FA), is invasive and can lead to untoward effects. As an emerging replacement, noninvasive OCT angiography (OCTA) is used regularly as a dye-free substitute with superior resolution and additional depth-sectioning abilities; however, general trends in FA as signified by varying intensity in images are not always reproducible in the fine structural detail in an OCTA image stack because of the source of their respective signals, OCT speckle decorrelation versus fluorescein emission. METHODS: We present a noninvasive/dye-free analog to angiography imaging using retinal hyperspectral imaging with a nonscanning spectral imager, the image mapping spectrometer (IMS), to reproduce perfusion-related data based on the abundance of oxyhemoglobin (HbO2) in the retina. With a new unmixing procedure of the IMS-acquired spectral data cubes (350 × 350 × 43), we produced noninvasive HbO2 maps unmixed from reflectance spectra. RESULTS: Here, we present 15 HbO2 maps from seven healthy and eight diseased retinas and compare these maps with corresponding FA and OCTA results with a discussion of each technique. CONCLUSIONS: Our maps showed visual agreement with hypo- and hyperfluorescence trends in venous phase FA images, suggesting that our method provides a new use for hyperspectral imaging as a noninvasive angiography-analog technique and as a complementary technique to OCTA. TRANSLATIONAL RELEVANCE: The application of hyperspectral imaging and spectral analysis can potentially improve/broaden retinal disease screening and enable a noninvasive technique, which complements OCTA.

3.
Opt Express ; 27(11): 15701-15725, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163763

ABSTRACT

A fiber-based snapshot imaging spectrometer was developed with a maximum of 31853 (~188 x 170) spatial sampling and 61 spectral channels in the 450nm-750nm range. A compact, custom-fabricated fiber bundle was used to sample the object image at the input and create void spaces between rows at the output for dispersion. The bundle was built using multicore 6x6 fiber block ribbons. To avoid overlap between the cores in the direction of dispersion, we selected a subset of cores using two alternative approaches; a lenslet array and a photomask. To calibrate the >30000 spatial samples of the system, a rapid spatial calibration method was developed based on phase-shifting interferometry (PSI). System crosstalk and spectral resolution were also characterized. Preliminary hyperspectral imaging results of the Rice University campus landscape, obtained with the spectrometer, are presented to demonstrate the system's spectral imaging capability for distant scenes. The spectrum of different plant species with different health conditions, obtained with the spectrometer, was in accordance with reference instrument measurements. We also imaged Houston traffic to demonstrate the system's snapshot hyperspectral imaging capability. Potential applications of the system include terrestrial monitoring, land use, air pollution, water resources, and lightning spectroscopy. The fiber-based system design potentially allows tuning between spatial and spectral sampling to meet specific imaging requirements.

4.
PLoS One ; 14(4): e0214090, 2019.
Article in English | MEDLINE | ID: mdl-30970020

ABSTRACT

At the primary care setting, where there are often no or minimal laboratories, examinations often consist of self-testing and rapid diagnostics. Because of this, medical devices must be simple, robust, and easy to operate. To address these concerns, an alternate fluorescence microscope design uses ultraviolet (UV) excitation, since fluorescent dyes that are excitable in the visible region are also excitable by UV. This may allow for the removal of typical excitation, emission, and dichroic filters as optical components absorb UV wavelengths and UV is not detected by silicon based detectors. Additionally, UV has a very low penetration into samples, which may allow for controlling the depth of excitation, and thus the imaging volume. Based on these ideas, we developed a simple fluorescence microscope built completely from off-the-shelf components that uses UV to image fluorescently stained samples. The simple opto-mechanical design of the system may allow it to be more compact and easy to use, as well as decrease the overall cost of the diagnostic device. For biological validation, we imaged whole blood stained with acridine orange and performed a two-part white blood cell differential count.


Subject(s)
Leukocyte Count , Microscopy, Fluorescence/methods , Microscopy, Ultraviolet/methods , Point-of-Care Systems , Fluorescent Dyes/chemistry , Humans , Leukocytes/ultrastructure , Optical Devices
5.
Biomed Opt Express ; 10(3): 1432-1445, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30891357

ABSTRACT

Fiber bundle endomicroscopy techniques have been used for numerous minimally invasive imaging applications. However, these techniques may provide limited spatial sampling due to the limited number of imaging cores inside the fiber bundle. Here, we present a custom-fabricated miniature objective that can be coupled to a fiber bundle and can overcome the fiber bundle's sampling threshold by utilizing the spectral encoding concept. The objective has an NA of 0.3 and an outer diameter of 2.4 mm, and can yield a maximum spatial resolution of 2 µm. The objective has been validated against a USAF resolution target and ex vivo tissue samples, and as a result yielded images with higher resolution and more details after the spectral encoding concept was employed.

6.
Opt Express ; 27(2): 1597-1612, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30696224

ABSTRACT

A high performance, snapshot Image Mapping Spectrometer was developed that provides fast image acquisition (100 Hz) of 16 bit hyperspectral data cubes (210x210x46) over a spectral range of 515-842 nm. Essential details of the opto-mechanical design are presented. Spectral accuracy, precision, and image reconstruction metrics such as resolution are discussed. Fluorescently stained cell samples were used to directly compare the data obtained using newly developed and the reference image mapping spectrometer. Additional experimental results are provided to demonstrate the abilities of the new spectrometer to acquire highly-resolved, motion-artifact-free hyperspectral images at high temporal sampling rates.

7.
RSC Adv ; 9(47): 27324-27333, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529242

ABSTRACT

A white blood cell (WBC) count with partial differential is an important clinical laboratory test. However, current methods to perform a WBC count and differential are difficult to use at the point of care or too expensive for use in low-resource settings. To meet this need, we developed the LeukoScope: a low-cost system to measure a WBC and neutrophil count from a single drop of blood at the point of care. The LeukoScope is battery powered and has a sample-to-answer time of <5 minutes. A drop of blood from a finger stick is added to a LeukoScope sample cartridge where pre-dried acridine orange fluorescently stains WBCs. The cartridge is then inserted into the LeukoScope reader where a portable fluorescence microscope captures a color image of the sample, which is analyzed to report results to the user. The LeukoScope system was tested at the point of care using fingerprick samples collected from 105 general oncology patients in Houston, TX. Performance of the LeukoScope was compared to that of a HemoCue WBC DIFF performed using the same fingerprick sample; clinical laboratory analysis of a venous blood draw was used as the gold standard in all cases. Bland-Altman analysis showed that the LeukoScope and HemoCue WBC DIFF had similar accuracy for measurement of WBC and neutrophil counts as compared to the gold standard. Seven out of eight patients with abnormal WBC count values were correctly identified using the LeukoScope, while six out of eight were correctly identified using the HemoCue WBC DIFF. Five out of six patients with abnormal neutrophil counts were correctly identified using the LeukoScope, while six of six were correctly identified using the HemoCue WBC DIFF.

8.
Opt Express ; 26(12): 15362-15376, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114785

ABSTRACT

A 3D printing technique for manufacturing air-clad coherent fiber optic faceplates is presented. The custom G-code programming is implemented on a fused deposition modeling (FDM) desktop printer to additively draw optical fibers using high-transparency thermoplastic filaments. The 3D printed faceplate consists of 20000 fibers and achieves spatial resolution 1.78 LP/mm. Transmission loss and crosstalk are characterized and compared among the faceplates printed from four kinds of transparent filaments as well as different faceplate thicknesses. The printing temperature is verified by testing the transmission of the faceplates printed under different temperatures. Compared with the conventional stack-and-draw fabrication, the FDM 3D printing technique simplifies the fabrication procedure. The ability to draw fibers with arbitrary organization, structure and overall shape provides additional degree of freedom to opto-mechanical design. Our results indicate a promising capability of 3D printing as the manufacturing technology for fiber optical devices.

9.
Biomed Opt Express ; 9(3): 1041-1056, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29541502

ABSTRACT

Fluorescence microscopy can be a powerful tool for cell-based diagnostic assays; however, imaging can be time consuming and labor intensive to perform. Tunable systems give the ability to electronically focus at user selected depths inside an object volume and may simplify the opto-mechanical design of the imaging system. We present a prototype of a universal, tunable, miniature fluorescence microscope built from poly(methyl methacrylate) singlets that incorporates miniature, electrowetted lenses for electronic focusing. We demonstrate the ability of this system to perform clinically relevant differential white blood cell counts using single use custom cartridges pre-loaded with the fluorescent dye acridine orange.

10.
Opt Eng ; 56(8)2017.
Article in English | MEDLINE | ID: mdl-29238114

ABSTRACT

We present an analysis of the shape, surface quality, and imaging capabilities of custom 3D printed lenses. 3D printing technology enables lens prototypes to be fabricated without restrictions on surface geometry. Thus, spherical, aspherical and rotationally non-symmetric lenses can be manufactured in an integrated production process. This technique serves as a noteworthy alternative to multistage, labor-intensive, abrasive processes such as grinding, polishing and diamond turning. Here, we evaluate the quality of lenses fabricated by Luxexcel using patented Printoptical© technology that is based on an inkjet printing technique by comparing them to lenses made with traditional glass processing technologies (grinding, polishing etc.). The surface geometry and roughness of the lenses were evaluated using white-light and Fizeau interferometers. We have compared peak-to-valley wavefront deviation, root-mean-squared wavefront error, radii of curvature and the arithmetic average of the roughness profile (Ra) of plastic and glass lenses. Additionally, the imaging performance of selected pairs of lenses was tested using 1951 USAF resolution target. The results indicate performance of 3D printed optics that could be manufactured with surface roughness comparable to that of injection molded lenses (Ra < 20 nm). The RMS wavefront error of 3D printed prototypes was at a minimum 18.8 times larger than equivalent glass prototypes for a lens with a 12.7 mm clear aperture, but when measured within 63% of its clear aperture, 3D printed components' RMS wavefront error was comparable to glass lenses.

11.
Opt Eng ; 56(8)2017.
Article in English | MEDLINE | ID: mdl-29238115

ABSTRACT

A prototype fiber-based imaging spectrometer was developed to provide snapshot hyperspectral imaging tuned for biomedical applications. The system is designed for imaging in the visible spectral range from 400 to 700 nm for compatibility with molecular imaging applications as well as satellite and remote sensing. An 81 × 96 pixel spatial sampling density is achieved by using a custom-made fiber-optic bundle. The design considerations and fabrication aspects of the fiber bundle and imaging spectrometer are described in detail. Through the custom fiber bundle, the image of a scene of interest is collected and divided into discrete spatial groups, with spaces generated in between groups for spectral dispersion. This reorganized image is scaled down by an image taper for compatibility with following optical elements, dispersed by a prism, and is finally acquired by a CCD camera. To obtain an (x, y, λ) datacube from the snapshot measurement, a spectral calibration algorithm is executed for reconstruction of the spatial-spectral signatures of the observed scene. System characterization of throughput, resolution, and crosstalk was performed. Preliminary results illustrating changes in oxygen-saturation in an occluded human finger are presented to demonstrate the system's capabilities.

12.
Tuberculosis (Edinb) ; 101S: S119-S123, 2016 12.
Article in English | MEDLINE | ID: mdl-27742463

ABSTRACT

While there have been research efforts to find faster and more efficient diagnostic techniques for tuberculosis (TB), it is equally important to monitor a patient's response to treatment over time, especially with the increasing prevalence of multi-drug resistant (MDR) and extensively-drug resistant (XDR) TB. Between sputum smear microscopy, culture, and GeneXpert, only culture can verify viability of mycobacteria. However, it may take up to six weeks to grow Mycobacterium tuberculosis (Mtb), during which time the patient may have responded to treatment or the mycobacteria are still viable because the patient has MDR or XDR TB. In both situations, treatment incurs increased patient costs and makes them more susceptible to host-drug effects such as liver damage. Coenzyme Factor 420 (F420) is a fluorescent coenzyme found naturally in mycobacteria, with an excitation peak around 420 nm and an emission peak around 470 nm. Using Mycobacterium smegmatis, we show that live and dead mycobacteria undergo different rates of photobleaching over a period of 2 min. These preliminary experiments suggest that the different photobleaching rates could be used to help monitor a patient's response to TB treatment. In future studies, we propose to describe these experiments with Mtb as both M. smegmatis and Mtb use F420.


Subject(s)
Microscopy, Fluorescence , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium smegmatis/enzymology , Optical Imaging/methods , Riboflavin/analogs & derivatives , Biomarkers/metabolism , Humans , Microbial Viability , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium smegmatis/isolation & purification , Predictive Value of Tests , Riboflavin/metabolism , Time Factors
14.
Biomed Opt Express ; 6(11): 4433-46, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26601006

ABSTRACT

Three-part differential white blood cell counts are used for disease diagnosis and monitoring at the point-of-care. A low-cost, miniature achromatic microscope was fabricated for identification of lymphocytes, monocytes, and granulocytes in samples of whole blood stained with acridine orange. The microscope was manufactured using rapid prototyping techniques of diamond turning and 3D printing and is intended for use at the point-of-care in low-resource settings. The custom-designed microscope requires no manual adjustment between samples and was successfully able to classify three white blood cell types (lymphocytes, granulocytes, and monocytes) using samples of peripheral whole blood stained with acridine orange.

15.
Biomed Opt Express ; 6(6): 2246-57, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26114043

ABSTRACT

We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

16.
Health Innov Point Care Conf ; 2014: 10-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25918749

ABSTRACT

Being able to perform a white blood cell (WBC) count and differential is a crucial laboratory test for basic diagnostic practices. In this paper, we demonstrate proof of concept results for a disposable cartridge that could be used to perform a WBC count and 3-part differential at the point-of-care. The cartridge is composed of a glass slide, a layer of transfer tape, and a glass cover slip and incorporates acridine orange for cell staining and sub-type differentiation; the stained blood is then imaged, and image analysis techniques return a WBC count and 3-part differential. The cartridge was tested on a laboratory microscope with 3 normal samples, and had promising results with 85.7% of images resulting in a WBC count with ±15% of the true value. Further, the 3-part differential concentrations determined using the disposable cartridge had strong correlations with the true concentrations (R2 values of 0.9986, 0.9421, and 0.6942 for granulocytes, lymphocytes, and monocytes, respectively). Preliminary designs for a low-cost, portable microscope have been created and are currently being prototyped.

SELECTION OF CITATIONS
SEARCH DETAIL
...