Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1870(2): 140745, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34906734

ABSTRACT

Bacteriophage endolysins are crucial for progeny release at the end of the lytic cycle. Mycobacteriophage's genomes carry a lysin A essential gene, whose product cleaves the peptidoglycan (PG) layer and a lysin B, coding for an esterase, that cleaves the linkage between the mycolic acids and the arabinogalactan-PG complex. Lysin A mycobacteriophage proteins are highly modular and in gp29 (LysA) of phage TM4 three distinctive domains were identified. By bioinformatics analysis the central module was previously found to be similar to an amidase-2 domain family with an N-acetylmuramoyl -L-alanine amidase activity. We demonstrated experimentally that purified LysA is able to lyse a suspension of Micrococcus lysodeikticus and can promote cell lysis when expressed in E. coli and Mycobacterium smegmatis. After incubation of LysA with MDP (Muramyl dipeptide, N-acetyl-muramyl-L-alanyl-D-isoglutamine) we detected the presence of N-acetylmuramic acid (NAcMur) and L-Ala- D- isoGlutamine (L-Ala-D-isoGln) corroborating the proposed muramidase activity of this enzyme. This protein was stabilized at acidic pH in the presence of Zn consistent with the increase of the enzymatic activity under these conditions. By homology modeling, we predicted that the Zn ion is coordinated by His 226, His 335, and Asp 347 and we also identified the amino acid Glu 290 as the catalytic residue. LysA activity was completely abolished in derived mutants on these key residues, suggesting that the PG hydrolysis solely relies on the central domain of the protein.


Subject(s)
Endopeptidases/metabolism , Mycobacteriophages/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptidoglycan/metabolism , Viral Proteins/metabolism , Computational Biology/methods , Endopeptidases/chemistry , Escherichia coli/metabolism , Galactans , Hydrolysis , Mass Spectrometry/methods , Micrococcus/metabolism , Muramic Acids/metabolism , Mycobacterium smegmatis/metabolism , Viral Proteins/chemistry
2.
Phage (New Rochelle) ; 2(1): 7-10, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-36148437

ABSTRACT

Between 2015 and 2019, we hosted an International Phage Course at Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. The 2-week full-time course was hands-on and included lectures from renowned phage biologists. Participating students were able to meet and discuss with recognized experts from around the world in a familiar setting, facilitating the establishment of scientific collaborations and the expansion of their networks. Eighty-four students from 14 Latin American countries have participated in the course, which included isolation, characterization, genome sequencing, and annotation of novel phages. We have successfully created a coursework that enabled the acquisition of new knowledge and expertise in bacteriophage biology and strengthened ties among Latin American colleagues.

3.
Phage (New Rochelle) ; 2(1): 43-49, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-36148439

ABSTRACT

Introduction: Because of the clinical relevance of Mycobacteria, and from a therapeutic perspective, there is an increasing interest to study phages that infect bacteria belonging to this genus. Materials and Methods: A phage was isolated from a soil sample, using Mycobacterium smegmatis as host. Its characterization included sequencing, annotation, and analysis of the genome, host range determination, and electron microscopy imaging. Results: Mycobacterium phage vB_MsmS_Celfi is a temperate phage able to infect Mycobacterium tuberculosis with high efficiency. From electron microscopy images, Celfi belongs to the Siphoviridae family. Genome analysis classified phage Celfi into cluster L, subcluster L2 of Actinobacteriophage clusters. Mycobacterium phage Celfi exhibits a Lysin B distant to those present in other members of the subcluster and other mycobacteriophages. Conclusions: The discovery of new phages that infect M. tuberculosis could contribute to the development of novel tools for detection systems and future treatment of the disease.

4.
Phage (New Rochelle) ; 2(1): 57-63, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-36148441

ABSTRACT

Introduction: Only a few Lactobacillus casei phages have so far been characterized. As several L. casei strains are part of probiotic formulations, bacteriophage outbreaks targeting these strains can lead to critical losses within the dairy industry. Materials and Methods: A new L. casei phage was isolated from raw milk obtained from a milking yard from the province of Buenos Aires. The phage genome was sequenced, annotated, and analyzed. Morphology was determined by electron microscopy and the host range was established. Results: Lactobacillus phage vB_LcaM_Lbab1 is a member of the Herelleviridae family and features a host range including L. casei/Lactobacillus paracasei and Lactobacillus kefiri strains. We further analyzed the baseplate proteins in silico and found putative carbohydrate binding modules that are responsible for host recognition in other Lactobacillus phages. Conclusions: A new Lactobacillus phage was isolated and characterized. The focus was made on its host recognition mechanism, pointing toward the development of future strategies to avoid deleterious infections in the dairy industry.

5.
Curr Opin Biotechnol ; 68: 8-14, 2021 04.
Article in English | MEDLINE | ID: mdl-33039679

ABSTRACT

The alarming increase in antibiotic resistance has placed the focus on phages as an alternative antimicrobial therapy. Recently, the first patient treatment using engineered phages to combat a mycobacterial infection was successfully performed; genetic modifications were made using Bacteriophage Recombineering of Electroporated DNA (BRED). BRED is a simple technique that allows genetic manipulation of phages. The phage DNA and a recombination substrate, with short homology to the target, are co-electroporated into recombineering proficient bacteria promoting high levels of recombination. After electroporation, cells are recovered and plated in an infectious centre assay. Individual plaques are then screened by PCR to identify the mutant phage. The main characteristics of this technique, the advantages of engineered versus wild type phages for therapeutic purposes and the future perspective of BRED for doing such modifications, are reviewed here.


Subject(s)
Bacteriophages , Anti-Bacterial Agents/pharmacology , Bacteria , Bacteriophages/genetics , DNA , Drug Resistance, Microbial , Humans
6.
Front Microbiol ; 9: 1471, 2018.
Article in English | MEDLINE | ID: mdl-30026735

ABSTRACT

The World Health Organization (WHO) estimates that 40% of tuberculosis (TB) cases are not diagnosed and treated correctly. Even though there are several diagnostic tests available in the market, rapid, easy, inexpensive detection, and drug susceptibility testing (DST) of Mycobacterium tuberculosis is still of critical importance specially in low and middle-income countries with high incidence of the disease. In this work, we have developed a microscopy-based methodology using the reporter mycobacteriophage mCherrybomb ϕ for detection of Mycobacterium spp. and phenotypic determination of rifampicin resistance within just days from sputum sample collection. Fluoromycobacteriophage methodology is compatible with regularly used protocols in clinical laboratories for TB diagnosis and paraformaldehyde fixation after infection reduces biohazard risks with sample analysis by fluorescence microscopy. We have also set up conditions for discrimination between M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM) strains by addition of p-nitrobenzoic acid (PNB) during the assay. Using clinical isolates of pre-XDR and XDR-TB strains from this study, we tested mCherrybomb Φ for extended DST and we compared the antibiotic resistance profile with those predicted by whole genome sequencing. Our results emphasize the utility of a phenotypic test for M. tuberculosis extended DST. The many attributes of mCherrybomb Φ suggests this could be a useful component of clinical microbiological laboratories for TB diagnosis and since only viable cells are detected this could be a useful tool for monitoring patient response to treatment.

7.
J Immunol ; 193(9): 4469-76, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25261474

ABSTRACT

The lack of responsiveness to self and non-self Ags is normally maintained by multiple mechanisms, including the suppressive activities of several T cell subsets. In this study, we show that CD8(+) T cells from both adult peripheral blood and umbilical cord blood mononuclear cells constitutively expressing HLA-DR represent a natural human CD8(+) regulatory T cell subset. Their suppressive effect appears to be cell-to-cell contact dependent and may involve CTLA-4 signaling between neighboring T cells. These regulatory T cells can be expanded in vitro and exhibit a suppressive capacity similar to that observed in ex vivo CD8(+)HLA-DR(+) T cells. The high frequency of CD8(+)HLA-DR(+) T cells that we detected in patients with non-small cell lung cancer deserves further work to confirm their putative suppressor effect within the tumor.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , HLA-DR Antigens/metabolism , Phenotype , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Communication , Cell Proliferation/drug effects , Female , Fetal Blood/cytology , HLA-DR Antigens/immunology , Humans , Immunomodulation , Immunophenotyping , Infant, Newborn , Interleukin-2/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/immunology , Lymphocyte Count , Male , Middle Aged , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology
9.
Clin Immunol ; 149(3): 400-10, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24211714

ABSTRACT

It is assumed that the ratio between effector T cells (Teff) and regulatory T cells (Tregs) controls the immune reactivity within the T-cell compartment. The purpose of this study was to investigate if Dexamethasone (Dex) affects Teff and Tregs subsets. Dex induced on Tregs a dose and time-dependent apoptosis which resulted in a relative increase of Teff. After TCR activation, Dex induced a strong proliferative inhibition of Teff, but a weaker proliferative inhibition on Tregs. These effects were modulated by IL-2, which not only restored the proliferative response, but also prevented Dex-induced apoptosis. The highest dose of IL-2 prevented apoptosis on all FOXP3+CD4+ T cells. Meanwhile, the lowest dose only rescued activated Tregs (aTregs), probably related to their CD25 higher expression. Because Dex did not affect the suppressor capacity of aTregs either, our results support the notion that under Dex treatment, the regulatory T-cell compartment maintains its homeostasis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Regulatory/drug effects , Adult , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/immunology , Female , Forkhead Transcription Factors/metabolism , Gene Expression , Homeostasis , Humans , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/metabolism , Lymphocyte Activation/drug effects , Male , Organ Specificity , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...