Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gait Posture ; 110: 10-16, 2024 May.
Article in English | MEDLINE | ID: mdl-38460464

ABSTRACT

BACKGROUND: Posterior tibialis tendon dysfunction (PTTD) is a chronic degenerative musculoskeletal disorder causing a progressive ankle complex and arch collapse altering lower limb biomechanics. However, biomechanical changes associated with stage 1 and 2 PTTD need to be better characterized during walking to guide clinical recommendations and improve non-operative treatments. RESEARCH QUESTION: What are the lower limb kinematic and kinetic differences between individuals with stage 1 (PTTD1), individuals with stage 2 PTTD (PTTD2) and healthy counterparts during gait? METHODS: Sixteen PTTD1, 11 PTTD2 and 20 healthy controls were included in this multicentric case-control study to compare their lower limb gait biomechanics. Kinematic and kinetic data were recorded using a three-dimensional motion capture system and a force plate. One-dimensional statistical parametric mapping was used to compare lower limb joint motion and moments between groups during the stance phase. RESULTS: PTTD1 had minimal biomechanical differences compared with the control group. In contrast, PTTD2 presented significant differences compared with controls and PTTD1. At the ankle, PTTD2 exhibited greater plantarflexion and eversion angles and midfoot dorsiflexion and inversion angles throughout stance compared with controls and PTTD1. PTTD2 presented lower midfoot abduction moments compared with controls. These changes led PTTD2 to exhibit knee and hip adaptative biomechanical mechanisms in the frontal and transverse planes in late stance. PTTD2 had greater knee internal rotation angles and smaller knee external rotation moments compared to controls. PTTD2 had smaller hip internal rotation angles compared with PTTD1 and smaller hip adduction moments compared with controls. SIGNIFICANCE: PTTD1 showed minimal biomechanical differences compared to controls and important differences compared to PTTD2. The lower limb biomechanical deficits accentuate as the pathology advances from stage 1 to stage 2. PTTD is a progressive condition needing early clinical management at stage 1 to avoid successive biomechanical changes associated with stage 2.


Subject(s)
Posterior Tibial Tendon Dysfunction , Walking , Humans , Biomechanical Phenomena , Case-Control Studies , Male , Female , Middle Aged , Posterior Tibial Tendon Dysfunction/physiopathology , Walking/physiology , Adult , Gait/physiology , Lower Extremity/physiopathology , Ankle Joint/physiopathology , Range of Motion, Articular/physiology , Hip Joint/physiopathology , Aged
2.
Clin Biomech (Bristol, Avon) ; 112: 106193, 2024 02.
Article in English | MEDLINE | ID: mdl-38330734

ABSTRACT

BACKGROUND: Foot orthoses are therapeutic insoles designed to induce various effects on lower limb biomechanics. However, conflicting findings in previous research, highlight the need to better understand how foot orthoses with different features affect lower limb biomechanics during challenging tasks, particularly during unilateral drop jump landings. METHODS: Seventeen participants with flat feet were recruited to participate in this cross-sectional descriptive study that examined the effects of thin-flexible foot orthoses and medially wedged foot orthoses on lower limb biomechanics during unilateral drop jump landings on level and valgus inclined surfaces. Midfoot, ankle, knee, and hip angles and moments were calculated and compared across conditions with repeated measures ANOVAs, using a statistical parametric mapping approach. FINDINGS: Medially wedged and thin-flexible foot orthoses reduced ankle pronation and arch flattening during unilateral drop jump landings on level and valgus inclined surfaces. Medially wedged foot orthoses further decreased midfoot dorsiflexion and ankle eversion angles compared to thin-flexible foot orthoses. Medially wedged foot orthoses also generated greater effects on ankle kinetics and hip kinematics during unilateral drop jump landings. INTERPRETATION: Medially wedged foot orthoses are more effective than thin-flexible foot orthoses in optimizing lower limb biomechanics during unilateral drop jump landings. While the biomechanical effects did not increase on inclined surfaces, medially wedged foot orthoses generated greater effects on proximal joints, highlighting their potential to improve hip stability and enhance overall lower limb function. Personalized foot orthoses selection based on specific biomechanical profiles should be further explored to optimize orthotic interventions benefiting individuals with musculoskeletal conditions.


Subject(s)
Foot Orthoses , Humans , Cross-Sectional Studies , Foot , Lower Extremity , Knee Joint , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...