Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 253: 121259, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38377923

ABSTRACT

The effectiveness of UV-based advanced oxidation processes (UV-AOPs) in degrading trace organic contaminants (TrOCs) can be significantly influenced by the ubiquitous presence of nitrate (NO3-) and nitrite (NO2-) in water and wastewater. Indeed, NO3-/NO2- can play multiple roles of NO3-/NO2- in UV-AOPs, leading to complexities and conflicting results observed in existing research. They can inhibit the degradation of TrOCs by scavenging reactive species and/or competitively absorbing UV light. Conversely, they can also enhance the elimination of TrOCs by generating additional •OH and reactive nitrogen species (RNS). Furthermore, the presence of NO3-/NO2- during UV-AOP treatment can affect the transformation pathways of TrOCs, potentially resulting in the nitration/nitrosation of TrOCs. The resulting nitro(so)-products are generally more toxic than the parent TrOCs and may become precursors of nitrogenous disinfection byproducts (N-DBPs) upon chlorination. Particularly, since the impact of NO3-/NO2- in UV-AOPs is largely due to the generation of RNS from NO3-/NO2- including NO•, NO2•, and peroxynitrite (ONOO-/ONOOH), this review covers the generation, properties, and detection methods of these RNS. From kinetic, mechanistic, and toxicologic perspectives, future research needs are proposed to advance the understanding of how NO3-/NO2- can be exploited to improve the performance of UV-AOPs treating TrOCs. This critical review provides a comprehensive framework outlining the multifaceted impact of NO3-/NO2- in UV-AOPs, contributing insights for basic research and practical applications of UV-AOPs containing NO3-/NO2-.


Subject(s)
Water Pollutants, Chemical , Water Purification , Nitrites , Nitrates , Ultraviolet Rays , Nitrogen Dioxide , Water Pollutants, Chemical/analysis , Water Purification/methods , Hydrogen Peroxide , Organic Chemicals , Oxidation-Reduction
2.
Water Res ; 241: 120169, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37290191

ABSTRACT

Concerns over human health risks associated with chemical contaminants (micropollutants) in drinking waters are rising due to the increased use of reclaimed water or water supplies impacted by upstream wastewater discharges. Ultraviolet (UV)-driven advanced oxidation processes (UV-AOPs) using radiation sources that emit at 254 nm have been developed as advanced treatments to degrade contaminants, while those UV-AOPs can be improved towards higher radical yields and lower byproduct formation. Several previous studies have suggested that Far-UVC radiation (200-230 nm) is a promising radiance source to drive UV-AOPs because the direct photolysis of micropollutants and production of reactive species from oxidant precursors can both be improved. In this study, we summarize from the literature the photodecay rate constants of five micropollutants by direct UV photolysis, which are higher at 222 than 254 nm. We experimentally determine the molar absorption coefficients at 222 and 254 nm of eight oxidants commonly used in water treatment and present the quantum yields of the oxidant photodecay. Our experimental results also show that the concentrations of HO·, Cl·, and ClO· generated in the UV/chlorine AOP can be increased by 5.15-, 15.76-, and 2.86-fold, respectively, by switching the UV wavelength from 254 to 222 nm. We also point out the challenges of applying Far-UVC for micropollutant abatement in water treatment, including the strong light screening effect of matrix components (e.g., carbonate, nitrate, bromide, and dissolved organic matter), the formation of byproducts via new reaction pathways, and the needs to improve the energy efficiency of the Far-UVC radiation sources.


Subject(s)
Water Pollutants, Chemical , Water Purification , Humans , Wastewater , Oxidation-Reduction , Chlorine , Oxidants , Water Purification/methods , Ultraviolet Rays , Hydrogen Peroxide
3.
Environ Sci Technol ; 57(47): 18909-18917, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37186817

ABSTRACT

Krypton chloride (KrCl*) excimer ultraviolet (UV) light may provide advantages for contaminant degradation compared to conventional low-pressure (LP) UV. Direct and indirect photolysis as well as UV/hydrogen peroxide-driven advanced oxidation (AOP) of two chemical contaminants were investigated in laboratory grade water (LGW) and treated secondary effluent (SE) for LPUV and filtered KrCl* excimer lamps emitting at 254 and 222 nm, respectively. Carbamazepine (CBZ) and N-nitrosodimethylamine (NDMA) were chosen because of their unique molar absorption coefficient profiles, quantum yields (QYs) at 254 nm, and reaction rate constants with hydroxyl radical. Quantum yields and molar absorption coefficients at 222 nm for both CBZ and NDMA were determined, with measured molar absorption coefficients of 26 422 and 8170 M-1 cm-1, respectively, and QYs of 1.95 × 10-2 and 6.68 × 10-1 mol Einstein-1, respectively. The 222 nm irradiation of CBZ in SE improved degradation compared to that in LGW, likely through promotion of in situ radical formation. AOP conditions improved degradation of CBZ in LGW for both UV LP and KrCl* sources but did not improve NDMA decay. In SE, photolysis of CBZ resulted in decay similar to that of AOP, likely due to the in situ generation of radicals. Overall, the KrCl* 222 nm source significantly improves contaminant degradation compared to that of 254 nm LPUV.


Subject(s)
Water Pollutants, Chemical , Water Purification , Dimethylnitrosamine , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Carbamazepine , Ultraviolet Rays , Photolysis , Hydrogen Peroxide , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...