Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chronobiol Int ; 34(5): 578-586, 2017.
Article in English | MEDLINE | ID: mdl-28156158

ABSTRACT

Performance and safety are impaired in employees engaged in shift work. Combat divers who use closed-circuit oxygen diving apparatus undergo part of their training during the night hours. The greatest risk involved in diving with such apparatus is the development of central nervous system oxygen toxicity (CNS-OT). We investigated whether the switch from day-to-night activity may be a risk factor for the development of CNS-OT using a diurnal animal model, the fat sand rat (Psammomys obesus). Animals were kept on a 12:12 light-dark schedule (6 a.m. to 6 p.m. at 500 lx). The study included two groups: (1) Control group: animals were kept awake and active during the day, between 09:00 and 15:00. (2) Experimental group: animals were kept awake and active during the night, between 21:00 and 03:00, when they were exposed to dim light in order to simulate the conditions prevalent during combat diver training. This continued for a period of 3 weeks, 5 days a week. On completion of this phase, 6-sulphatoxymelatonin (6-SMT) levels in urine were determined over a period of 24 h. Animals were then exposed to hyperbaric oxygen (HBO). To investigate the effect of acute melatonin administration, melatonin (50 mg/kg) or its vehicle was administered to the animals in both groups 20 min prior to HBO exposure. After the exposure, the activity of superoxide dismutase, catalase and glutathione peroxidase was measured, as were the levels of neuronal nitric oxide synthase (nNOS) and overall nitrotyrosylation in the cortex and hippocampus. Latency to CNS-OT was significantly reduced after the transition from day-to-night activity. This was associated with alterations in the level of melatonin metabolites secreted in the urine. Acute melatonin administration had no effect on latency to CNS-OT in either of the groups. Nevertheless, the activity of superoxide dismutase and catalase, as well as nitrotyrosine and nNOS levels, were altered in the hippocampus following melatonin administration. On the basis of these results, we suggest that a switch from diurnal to nocturnal activity may represent an additional risk factor for the development of CNS-OT. Utilizing a diurnal animal model may contribute to our understanding of the heightened risk of developing CNS-OT when diving with closed-circuit oxygen apparatus at night.


Subject(s)
Central Nervous System Diseases/chemically induced , Circadian Rhythm/drug effects , Gerbillinae/physiology , Oxygen/toxicity , Animals , Antioxidants/metabolism , Biological Clocks , Circadian Rhythm/physiology , Hyperbaric Oxygenation/adverse effects , Male , Melatonin/administration & dosage , Melatonin/analogs & derivatives , Melatonin/pharmacology , Melatonin/urine , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism , Photoperiod , Tyrosine/analogs & derivatives , Tyrosine/metabolism
2.
Physiol Behav ; 165: 1-6, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27343805

ABSTRACT

The relationships between biological rhythms and affective disorders are known but their underlying biology not clear. There is difficulty in studying circadian rhythms in humans and appropriate animal models are hard to identify or develop. Some studies show that diurnal rodents can be advantageous model animals for the study of interactions between biological rhythms and affective disorders but previous studies did not include females whereas in humans there are sex differences in affective disorders. The present study tested the effects of short photoperiods in both males and females of the diurnal golden spiny mouse (Acomys russatus). Adult, female and male spiny mice were housed in either neutral photoperiod (12:12 light/dark; NP), or short photoperiod (5:19 light/dark; SP) conditions. After 3weeks acclimatization, animals were tested for spontaneous activity in an open field, elevated plus maze (EPM), sweet solution preference (SSP) and the forced swim test (FST). Both sexes responded to the SP, but while SP males showed increased anxiety-like behavior in the EPM and depression-like behavior in the FST, females showed increased activity, reduced anxiety-like behavior in the EPM, depression-like response in the SSP and no effect in the FST. Differences between sexes were previously demonstrated in behavioral tests that followed a variety of manipulations, and were usually explained in the context of sex hormones. Yet, the current results cannot be compared with previous data from diurnal rodents and further testing of females from other diurnal rodents are needed to explore whether these differences are a general phenomenon or possibly unique to golden spiny mice.


Subject(s)
Anxiety/physiopathology , Circadian Rhythm/physiology , Depression/physiopathology , Murinae/physiology , Photoperiod , Sex Characteristics , Animals , Choice Behavior/physiology , Cohort Studies , Female , Male , Models, Animal , Motivation/physiology , Motor Activity/physiology , Random Allocation , Reward , Saccharin , Taste Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL