Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 167303, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37742951

ABSTRACT

Many phenological studies have shown that spring geophytes are very sensitive to climate change, responding by shifting flowering and fruiting dates. However, there is a gap in knowledge about climatic drivers of their distributions and range shifts under climate change. Here we aimed to estimate climate niche shifts for four widely distributed and common geophytes of the nemoral zone of Europe (Anemone nemorosa, Anemone ranunculoides, Convallaria majalis and Maianthemum bifolium) and to assess the threat level under various climate change scenarios. Using MaxEnt species distribution models and future climate change scenarios we found that the precipitation of the warmest quarter was the most important factor shaping their ranges. All species studied will experience more loss in the 2061-2080 period than in 2041-2060, and under more pessimistic scenarios. M. bifolium will experience the highest loss, followed by A. nemorosa, A. ranunculoides, and the smallest for C. majalis. A. ranunculoides will gain the most, while M. bifolium will have the smallest potential range expansion. Studied species may respond differently to climate change despite similar current distributions and climatic variables affecting their potential distribution. Even slight differences in climatic niches could reduce the overlap of future ranges compared to present. We expect that due to high dependence on the warmest quarter precipitation, summer droughts in the future may be particularly severe for species that prefer moist soils. The lack of adaptation to long-distance migration and limited availability of appropriate soils may limit their migration and lead to a decline in biodiversity and changes in European forests.


Subject(s)
Climate Change , Forests , Biodiversity , Europe , Soil , Ecosystem
2.
Sci Total Environ ; 892: 164483, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37268126

ABSTRACT

We estimated climate niche shifts and threat levels under various climate change scenarios for Vaccinium myrtillus L. and V. vitis-idaea L. We developed the MaxEnt species distribution models, and predicted future climatic optima for climate change scenarios for 2041-2060 and 2061-2080. The precipitation of the warmest quarter was the most important factor shaping the climatic niches of the studied species. We predicted the largest shifts in climate niches from the present to the 2040-2060 period, with the most pessimistic scenario predicting significant range losses for both species, mainly in Western Europe. Under the most optimistic SSP126 scenario, both species will lose 39 % of their climatic niche for both periods. In the worst-case scenario (SSP585) for 2061-2080, climatic niche contraction will cover 47 % and 39 % of the current climatic niche for V. myrtillus and V. vitis-idaea, respectively. The predicted changes in species distribution could have far-reaching consequences for temperate and boreal forests due to their crucial biocenotic role in forest ecosystems, high potential for carbon sequestration, and prevention of soil erosion. Furthermore, the changes would likely affect the economic potential regarding fruit production and culturally relevant uses of different parts of the plants, mainly fruits.


Subject(s)
Vaccinium myrtillus , Vaccinium vitis-idaea , Vitis , Ecosystem , Climate Change , Europe
3.
Ecol Evol ; 13(4): e9979, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038519

ABSTRACT

Considering the dynamically changing environment, we cannot be sure whether we are using the best possible plant functional traits to explain ecological mechanisms. We provide a quantitative comparison of 13 trait sets to determine the availability of functional traits representing different plant organs, assess the trait sets with the highest explanatory potential, and check whether including a higher number of traits in a model increases its accuracy. We evaluated the trait sets by preparing 13 models using similar methodology and responding to a research question: How do models with different sets of functional traits predict the conservation status of species? We used the dataset covering all woody species from Poland (N = 387), with 23 functional traits. Our findings indicate that what matters most for a trait set of high explanatory power is the precise selection of those traits. The best fit model was based on the findings of Díaz et al. (2016; The global spectrum of plant form and function, Nature, 529, 167-171) and included only six traits. Importantly, traits representing different plant organs should be included whenever possible: Three of the four best models from our comparison were the ones that included traits of various plant organs.

SELECTION OF CITATIONS
SEARCH DETAIL
...