Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Total Environ ; 901: 165898, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37527710

ABSTRACT

The number of applications and commercialized processes utilizing ionic liquids has been increasing, and it is anticipated that this trend will persist and even intensify in the future. Ionic liquids possess desirable characteristics, such as low vapor pressure, good water solubility, amphiphilicity, and stability. Nevertheless, these properties can influence their environmental behavior, resulting in resistance to biotic and abiotic degradation and subsequent water contamination with more harmful derivatives. However, there is a notable scarcity of data regarding the impact of mixtures comprising ionic liquids and other micropollutants. Identifying potential potentiation of ionic liquids (Ils) toxicity in the presence of other xenobiotics is a proactive risk assessment measure. Therefore, the study aims to fill an important knowledge gap and identify possible interactions between imidazolium-based ionic liquid (IM1-12Br) and the common antibiotic oxytetracycline (OXTC). During 11-day experiments, selected marine, brackish and freshwater microorganisms (diatom Phaeodactylum tricornutum, cyanobacterium Microcystis aeruginosa and green algae Chlorella vulgaris) were exposed to binary mixtures of target substances. The assessed responses encompassed chlorophyll a kinetic parameters related to photosynthesis efficiency, as well as pigment concentrations, specifically phycobilin content. Additionally, the impact on the luminescent marine bacterium Aliivibrio fischeri has been evaluated. Significant effects on the growth, photosynthetic processes, and pigment content were observed in all the targeted microorganisms. The concentration addition (CA) and independent action (IA) mathematical models followed by the Model Deviation Ratio (MDR) evaluation enabled the identification of mainly synergistic interactions in the studied mixtures. The findings of present study offer valuable insights into the impacts of ionic liquids and other organic micropollutants.

2.
Sci Total Environ ; 896: 165262, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37400031

ABSTRACT

Climate-related changes in environmental conditions, such as reduction of sea ice, intensive glacier retreat, and increasing summer precipitation, directly influence the arctic marine environment and, therefore, the organisms living there. Benthic organisms, being an important food source for organisms from higher trophic levels, constitute an important part of the Arctic trophic network. Moreover, the long lifespan and limited mobility of some benthic species make them suitable for the study of the spatial and temporal variability of contaminants. In this study, organochlorine pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) were measured in benthic organisms collected in three fjords of western Spitsbergen. Two of these were recommended by the Marine Biodiversity and Ecosystem Functioning (MARBEF) Network of Excellence as European flagship sites, namely Hornsund as the Biodiversity Inventory and Kongsfjorden as the Long-Term Biodiversity Observatory. Adventfjorden, with notable human activity, was also studied. Æ©7 PCB and HCB concentrations in sediments were up to 2.4 and 0.18 ng/g d.w. respectively. Concentrations of Æ©7 PCBs and HCB measured in collected benthic organisms were up to 9.1 and 13 ng/g w.w., respectively. In several samples (41 of 169) the concentrations of ∑7 PCBs were below the detection limit values, yet nevertheless the results of the research show effective accumulation of target organochlorine contaminants by many Arctic benthic organisms. Important interspecies differences were observed. Free-living, mobile taxa, such as shrimp Eualus gaimardii, have accumulated a large quantity of contaminants, most probably due to their predatory lifestyle. ∑7 PCB and HCB concentrations were both significantly higher in Hornsund than in Kongsfjorden. Biomagnification occurred in 0 to 100 % of the predator-prey pairs, depending on the congener analyzed. Although the sampled organisms were proved to have accumulated organochlorine contaminants, the measured levels can be considered low, and not posing a substantial threat to the biota.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Humans , Polychlorinated Biphenyls/analysis , Hexachlorobenzene/analysis , Ecosystem , Svalbard , Estuaries , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 30(10): 27895-27911, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36396761

ABSTRACT

Bottom sediments deposited in retention tanks (RTs) located on two urban streams (Oliwski and Strzyza) in the central part of Gdansk (Poland) were analysed for polycyclic aromatic hydrocarbons' (PAHs) content. PAHs were extracted from samples with methylene chloride, then the extracts were subjected to clean-up applying the solid phase extraction (SPE) method. Quantitative and qualitative determination of 16 PAHs was performed with the use of gas chromatography/mass spectrometry technique. A multi-dimensional approach was applied to analyse PAHs' spatial distribution, source, and contamination status. Potential sources of PAHs were verified using isomer ratios supported by a statistical approach. The Σ16PAHs (in mg/kg d.w.) ranged from 1.95 ± 0.64 to 20.4 ± 6.8 for RTs located on the Oliwski Stream and from 0.50 ± 0.17 to 8.6 ± 2.9 for RTs located on the Strzyza Stream. PAHs detected in bottom sediments were mainly composed of 4- and 5-ring compounds. PAH isomer ratios such as Phen/Anth, Flth/Pyr, B(a)A/B(a)A + Chry, Inpy/Inpy + B(ghi)P, Flth/Flth + Pyr, Anth/Anth + Phen, and Flth/Flth + Pyr suggested delivery pathways for biomass, coal, and petroleum combustion. Petrogenic PAHs related to fuel leaks from cars were not detected. Statistical analyses confirmed traffic and heating system sources, while factor analysis (FA) pointed out the abrasion of wasting parts of vehicles. Based on threshold levels presented in sediment quality guidelines (SQGs), in most cases, PAHs were at low levels with occasional negative biological effects on organisms. Only sediments deposited in two RTs located on the Oliwski Stream presented harmful features for sediment-dwelling organisms. The risk assessment performed accordingly to the Σ16PAHs presented a moderate and high risk for biota. This study not only reflects the direct threat related to PAH content in bottom sediments, but also highlights the overall pollution of an area, considered to be a recreational part of the city (Oliwski Stream catchment). The findings of this study highlight the need to launch preventative methods to protect the area against pollution from heating system emission and traffic.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Coal/analysis , Rivers/chemistry , China
4.
Sci Total Environ ; 858(Pt 1): 159388, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36240918

ABSTRACT

Although imidazolium ionic liquids (ILs) are beginning to be used more widely in many industrial fields e.g., as reaction media, electrolytes, stationary phases in gas chromatography), there is still little information about their potential environmental fate. Among the uncertainties regarding the risks associated with these compounds, bioconcentration is one of the key issues, about which many doubts have been raised in recent years. While in vitro data suggest that permanently charged compounds can also bioconcentrate, conclusive evidence in the form of studies on organisms, at least for selected compounds, is needed. Therefore, the main objective of this work was to determine whether imidazolium cations of ILs, namely 1-methyl-3-octylimidazolium ([IM18]+) and 1-methyl-3-dodecylimidazolium ([IM1-12]+), can bioconcentrate in marine invertebrates tissues. During 21-day experiments, Mytilus trossulus mussels were exposed to these cations individually, at a concentration of 10 µg/L. In our study, it has been demonstrated for the first time during in vivo study, that long-chain imidazolium ionic liquids can bioconcentrate. The determined BCF value for [IM1-12]+ of 21,901 ± 3400 L/kg makes this compound to be considered highly bioaccumulative according to commonly accepted criteria. However, the obtained BCF for [IM18]+ (with the value below 100) suggests that this cation has little potential for bioconcentration. On the other hand, no salinity or anion influence on the bioconcentration of the tested cations was observed. Our tests also confirm that imidazolium ILs exhibit acute toxicity only at relatively high concentration levels, as LC50 reached 0.68 mg/L for [IM1-12][Br], and 11.66 mg/L for [IM18][C(CN)3]. This further confirms that the risks associated with the potential presence of these compounds in the environment should be attributed to their high persistence and potential bioconcentration, rather than acute toxicity.


Subject(s)
Ionic Liquids , Mytilus , Animals , Ionic Liquids/chemistry , Bioaccumulation , Seafood , Cations
5.
Mar Pollut Bull ; 178: 113559, 2022 May.
Article in English | MEDLINE | ID: mdl-35364370

ABSTRACT

Wastewater treatment plants (WWTPs) transmit many chemical contaminants to aquatic environments. Quantitative data on micropollutant emissions via WWTPs are needed for environmental risk assessments and evaluation of mitigation measures. This study compiled published data on substances analysed in effluents from WWTPs in the Baltic Sea region, assessed country related differences in the data sets and estimated micropollutant inputs to the Baltic Sea catchment. Concentration data were found for 1090 substances analysed at 650 WWTPs. Heterogeneity and low number of data points for most substances hindered adequate comparisons of country specific concentrations. Emission estimates were made for the 280 substances analysed in at least five WWTPs in years 2010 to 2019. For selected substances, mass loads were compared to previously published estimations. The study provides data useful for national and Baltic Sea-scale pressure analysis and risk assessments. However, it also highlights the need for broad scope monitoring of micropollutants in wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater/chemistry , Water Pollutants, Chemical/analysis
6.
Mar Pollut Bull ; 177: 113488, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276612

ABSTRACT

Concentrations of seven polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and twelve polycyclic aromatic hydrocarbons (PAHs) were examined in plankton collected in summer from different Arctic fjords (Hornsund, Kongsfjorden, Adventfjorden). The levels of all target contaminants in arctic protists have been analyzed for the first time. This is also the first report on PAH levels in arctic fjords zooplankton. ∑7 PCB, HCB and ∑12 PAH concentrations were up to 3.58 ng/g w.w., 0.28 ng/g w.w. and 249 ng/g w.w., respectively. Among the zooplankton species, the highest concentrations of the most analyzed contaminants were detected in Themisto abyssorum. This could be explained by the predatory feeding strategy of this species. The importance of diet was confirmed by the low concentrations of contaminants detected in the herbivorous copepod Calanus spp. Depending on contaminant, bioaccumulation occurred in 50 to 100% studied cases. Studies have shown significant biomagnification of PCBs and PAHs in zooplankton predator-prey pairs.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Estuaries , Hexachlorobenzene/analysis , Plankton , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Svalbard , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 798: 149300, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34340088

ABSTRACT

Soil samples from cut slopes from lightly loaded railway lines used by Diesel Multiple Units for 5 years in Gdansk (Poland) were collected and analyzed for trace metals (TMs): Zn, Pb, Cd, Ni, Cr, Cu, and Fe. The main aim was to assess soil enrichment, contamination status, and distribution of TMs relative to the distance from the railway track. Extensive source tracking analyses were performed using cluster analysis (CA) and the Pb isotope ratios approach (206Pb, 207Pb, and 208Pb). Soil samples were affected by Cr, Cu, Pb, and Zn (max values in mg/kg d.w.: 31.1, 145, 80.5, and 115, respectively). The Enrichment Factor showed moderate (Cr, Zn, Pb) to very severe (Cu) enrichment. CA allowed TMs to be divided into two general groups: a) containing Zn, Pb, Cd with slight interaction with Cu; and b) containing Fe and Ni with slight interaction with Cr. Correlation analyses indicated Cr as an outlying TM delivered from a separate source associated with the specificity of the construction of railroad 248, where alloys containing Cr were used to counteract increasing wear-and-tear of the rails. Pb isotopic ratios in the ranges of 1.16-1.20 (206Pb/207Pb) and 2.05-2.10 (208Pb/206Pb) corresponded to anthropogenic supplementation (coal combustion, road vehicles, and railroad transport) of Pb and Pb-correlated TMs (Zn, Cd, and partly Cu). Despite the research focus on the impact of the railroad contribution, a comparison with other forms of transport indicated that road transport appeared to have a higher contributing factor to TM pollution at the investigated site. This general conclusion again emphasizes the lower environmental footprint exhibited by railway transport in comparison to road transport.


Subject(s)
Metals, Heavy , Railroads , Soil Pollutants , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
8.
Plants (Basel) ; 10(3)2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33801134

ABSTRACT

Antibiotic residues have been commonly detected worldwide in freshwater, estuarine, and marine ecosystems. The review summarizes the up-to-date information about the toxic effects of over 60 antibiotics on nontarget autotrophic microorganisms with a particular focus on marine microalgae. A comprehensive overview of the available reports led to the identification of significant knowledge gaps. The data on just one species of freshwater green algae (Raphidocelis subcapitata) constitute 60% of the total information on the toxicity of antibiotics, while data on marine species account for less than 14% of the reports. Moreover, there is a clear knowledge gap regarding the chronic effects of antibiotic exposure (only 9% of studies represent exposition time values longer than 7 days). The review summarizes the information on different physiological endpoints, including processes involved in photosynthesis, photoprotective and antioxidant mechanisms. Currently, the hazard assessment is mostly based on the results of the evaluation of individual chemicals and acute toxicity tests of freshwater organisms. Future research trends should involve chronic effect studies incorporating sensitive endpoints with the application of environmentally relevant concentrations, as well as studies on the mixture effects and combined environmental factors influencing toxicity.

9.
Sci Total Environ ; 771: 144565, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33736145

ABSTRACT

Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.


Subject(s)
Ecotoxicology , Water Pollutants, Chemical , Animals , Aquatic Organisms , Humans , Invertebrates , Reproducibility of Results , Stem Cells , Water Pollutants, Chemical/toxicity
10.
Mar Pollut Bull ; 164: 111980, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33486131

ABSTRACT

In the present study, we examine contamination with PCBs, HCB and PAHs in the seawater of Arctic fjords (Hornsund, Kongsfjorden and Adventfjorden) which differ in environmental conditions and are particularly sensitive to climate change. We also investigate how the melting glaciers and ocean currents may affect the distribution and fate of target compounds in the seawater column in the fjords. The ∑7 PCB, HCB and ∑12 PAH concentrations in seawater ranged from, respectively: 0.002 to 41.2 ng/L; from LOQ to 233 ng/L; and from 0.196 to 311 ng/L. The research indicates that the concentrations of contaminants detected in Arctic fjords depend on the physicochemical properties of these compounds, local human activity and occurrence of glacier meltwaters. Detected HCB and PAH concentrations in most of the seawater samples were at levels classified as harmless, however in 30 out of 80 analysed suspended particulate matter samples some compounds were present at toxic levels.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Arctic Regions , Environmental Monitoring , Estuaries , Hexachlorobenzene/analysis , Humans , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seawater , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 768: 144983, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33454486

ABSTRACT

The study presents results from 6 months of phytoremediation of sediments dredged from three urban retention tanks carried out in a mesocosm setup with the use of P. australis. Two kinds of P. australis seedlings were considered: seedlings originating from natural (uncontaminated - Suncont) and anthropogenically changed environments (contaminated - Scont); this distinction was reflected in the baseline concentrations of trace metals inside their tissues. The potentially toxic elements (PTEs) considered in this study were as follows: Zn, Cu, Cd, Ni, Cr, and Pb. The aim of the study was to compare the uptake, accumulation, and translocation properties of seedlings with different initial trace metal contents. The PTE concentrations were analyzed in sediments as well as in belowground and aboveground parts of plants in the middle (3rd month) and at the end of the investigation period using inductively coupled plasma mass spectrometry (ICP-MS), and the accumulation of PTEs in plant tissues was calculated. Phytoextraction efficiency was evaluated using the bioconcentration factor (BF) and translocation factor (TF). Plant morphology was assessed with scanning electron microscopy (SEM) to document plant stress due to PTE exposure. The results of our study indicated that P. australis seedlings originating from sites differing in the initial trace metal content exhibited different behavior when grown on sediments dredged from urban retention tanks. Suncont seedlings with low initial metal contents tended to adapt to the dredged sediments and showed phytoextraction ability, while Scont seedlings originating from sites with initial high contents of trace metals acted as phytoexcluders and tended to release PTEs from their tissues into the sediments. The morphological and structural effects caused by metal toxicity were observed in growth limitation, root tissue disturbance, root hair number decrease, and structural alterations in the epidermis and endodermis. Therefore, the Suncont seedlings presented better properties and adaptability for phytoremediation purposes.


Subject(s)
Metals, Heavy , Cadmium , Geologic Sediments , Lead , Metals, Heavy/analysis , Seedlings/chemistry , Zinc
12.
Mar Pollut Bull ; 162: 111917, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33321304

ABSTRACT

Knowledge of contaminant distribution is important, particularly in the vulnerable first results about the occurrence of seventeen polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans and twelve dioxin-like polychlorinated biphenyls in arctic fjord seawater are reported. The contaminants were measured in 10 samples of suspended particulate matter collected in Hornsund (Svalbard). The ∑PCDD/F and ∑dl-PCB concentrations ranged from 0.066 to 231.47 pg/L and from 2.43 to 46.43 pg/L respectively. In terms of total PCDD/Fs, in general highly chlorinated PCDFs constituted the most significant fraction. Among dl-PCB compounds, PCB118 was the dominant congener. The toxicity equivalent for the samples ranged from 0.0008 to 1.90 pg I-TEQ/L for ∑PCDD/Fs, while for ∑dl-PCB it ranged from 0.0002 to 0.024 pg WHO05-TEQ/L. High concentrations of dioxins and dl-PCBs in some samples indicated that those contaminants could pose a threat to marine biota.


Subject(s)
Benzofurans , Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Dioxins/analysis , Estuaries , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Seawater , Svalbard
13.
Environ Pollut ; 269: 115744, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33257153

ABSTRACT

Microplastic pollution has become ubiquitous, affecting a wide variety of biota. Although microplastics are known to alter the development of a range of marine invertebrates, no studies provide a detailed morphological characterisation of the developmental defects. Likewise, the developmental toxicity of chemicals leached from plastic particles is understudied. The consequences of these developmental effects are likely underestimated, and the effects on ecosystems are unknown. Using the sea urchin Paracentrotus lividus as a model, we studied the effects of leachates of three forms of plastic pellet: new industrial pre-production plastic nurdles, beached pre-production nurdles, and floating filters, known as biobeads, also retrieved from the environment. Our chemical analyses show that leachates from beached pellets (biobead and nurdle pellets) and highly plasticised industrial pellets (PVC) contain polycyclic aromatic hydrocarbons and polychlorinated biphenyls, which are known to be detrimental to development and other life stages of animals. We also demonstrate that these microplastic leachates elicit severe, consistent and treatment-specific developmental abnormalities in P. lividus at embryonic and larval stages. Those embryos exposed to virgin polyethylene leachates with no additives nor environmental contaminants developed normally, suggesting that the abnormalities observed are the result of exposure to either environmentally adsorbed contaminants or pre-existing industrial additives within the polymer matrix. In the light of the chemical contents of the leachates and other characteristics of the plastic particles used, we discuss the phenotypes observed during our study, which include abnormal gastrulation, impaired skeletogenesis, abnormal neurogenesis, redistribution of pigmented cells and embryo radialisation.


Subject(s)
Paracentrotus , Water Pollutants, Chemical , Animals , Aquatic Organisms , Ecosystem , Embryo, Nonmammalian , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Environ Sci Pollut Res Int ; 28(12): 14299-14309, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31875292

ABSTRACT

The retention of heavy metal (HM) was studied in root and rhizomes (BLG), stems (ST), and leaves (LF) of Phragmites australis (common reed) seedlings collected from different locations, differing in the scale of anthropogenic interference. The analysis includes the reference samples of sediments in uncontaminated lake Garczonki and contaminated roadside ditch in Cieplewo. The concentrations of Zn, Cu, Pb, Cd, Ni, and Cr were analyzed in plant tissues and sediments using the atomic absorption spectrometry and inductively coupled plasma mass spectrometry. The general assessment of sediments collected in the Garczonki lake showed a good environmental status; while in the roadside ditch in Cieplewo, the sediments were considerably polluted with HM. In the first stage of plant growth, all of the analyzed HMs are mainly inhibited by BLG system. The decreasing trend of elements was as follows: BLG > ST > LF. The organs followed different decreasing trends of HM concentration; the trend Zn > Cu > Ni > Cr > Pb > Cd was found in ST and LF for the Garczonki lake seedlings and for BLG and LF for the roadside ditch in Cieplewo seedlings. Zn showed the highest concentration, while Cd the lowest concentration in each of the examined organs. The bioaccumulation factor indicated the higher mobility of HM in seedlings in the Garczonki lake than in the roadside ditch in Cieplewo. The morphological studies suggest the good state and health of seedling from both sites; however, the reduction of root hair surface was observed for the roadside ditch seedlings. The anatomical studies present changes in the size of the nucleus and count of chloroplasts in LF. No reaction on HM contamination sediments in the seedlings from the roadside ditch in Cieplewo in the aerenchyma was noted. Potentially, both types of seedlings can be used to decontaminate environments rich in HM. However, the level of HM absorbed by seedlings (in the first stage of growth) should be considered due to the behavior in the target phytoremediation site.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Biodegradation, Environmental , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Poaceae , Seedlings/chemistry , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 749: 141511, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32829276

ABSTRACT

Diffuse pollution formed during a surface runoff on paved surfaces is a source of heavy metals (HMs) of various origin. This research study indicates the connection between bottom sediments of retention tanks located on urban streams and road sweeping wastes (RSW) that migrate during surface runoff to the stormwater drainage systems with discharge to the retention tanks. Moreover, we test the primary sources of HMs in RSW by analysing the mechanical wastes (MW) produced by vehicles in order to track the relationship between car parts and HMs deposited in the retention tanks receiving the surface runoff from streets. To identify the origin of HMs diverse source tracking approaches were used: statistical methods, Pb isotope ratios, and the flag element ratio approach. MW presented a very high HMs content (max observed values in mg/kg d.w.: 10477-Zn, 3512-Cu, 412-Pb, 3.35-Cd, 226-Ni, and 633-Cr), while for RSW the HMs content was similar to the bottom sediments. The total carcinogenic risk raises concerns due to the Cr content. The source of Zn was tyre wear and traffic. Ni, Cr, Fe, and Cd were correlated to Zn and shared a common/similar origin. PCA suggested that Cu features quasi-independent behaviour. The Pb isotopic ratios of RSW indicated Pb enrichment originating from coal combustion, while the gasoline and diesel source of Pb was excluded. The Pb isotopic ratios characteristic for MW were in within the following ranges: 1.152-1.165 (206Pb/207Pb), 2.050-2.085 (208Pb/206Pb), and 2.350-2.418 (208Pb/207Pb). The complex analysis of HMs origin confirmed the motorization origin of HMs: Zn, Cr, Ni, and Cd, except Pb (coal combustion as the main source) and Cu (non-uniform origin). The results of various source tracking methods were coherent, but Pb isotope ratios alone brought important information allowing to link Pb in sediments to the atmospheric deposition of coal combustion products.

16.
Sci Total Environ ; 713: 136522, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32019013

ABSTRACT

Even though the occurrence of pharmaceuticals in the water environment is thought to be a potential problem for human health and aquatic organisms, the level of knowledge of their sources and presence in the marine ecosystem is still insufficient. Therefore, this study was designed to determine the emergence of sixteen pharmaceuticals and caffeine in groundwater, submarine groundwater discharge (SGD), rivers and coastal seawater in the southern Baltic Sea. It has been recognized that chemical substances load associated with SGD can affect coastal ecosystems equally or even greater than surface runoff. Hence, the Bay of Puck, which is an active groundwater discharge area, has been chosen as a model study site to assess the preliminary risk of pharmaceutical and caffeine residues supply in coastal ecosystem. A special focus was placed on tracing the possible sources of pollution for groundwater and SGD based on the composition of collected samples. Five pharmaceuticals (carbamazepine, sulfapyridine, sulfamethoxazole, ketoprofen and diclofenac) and caffeine were detected in varying concentrations from below the detection limit to 1528.2 ng L-1. Caffeine and diclofenac were the most widespread compounds. Groundwater was mostly enriched in the analysed compounds and consequently SGD has been recognized as an important source of identified pharmaceutical and caffeine residues to the Bay of Puck. A predicted no-effect concentration (PNEC) was determined in order to perform an environmental risk assessment of five pharmaceuticals and caffeine detected in water samples. Finally, future challenges and potential amendments in monitoring strategies are discussed.


Subject(s)
Ecosystem , Bays , Caffeine , Environmental Monitoring , Groundwater , Seawater , Water Pollutants, Chemical
17.
Talanta ; 200: 316-323, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31036191

ABSTRACT

In this study, an ASE (Accelerated Solvent extraction)-SPE (Solid Phase Extraction)-GC/MS(SIM) method for the simultaneous determination of five non-steroidal anti-inflammatory drugs (NSAIDs: ibuprofen (IBU), paracetamol (PAR), diclofenac (DIC), naproxen (NAP) and ketoprofen (KET)) and three natural estrogens (estrone (E1), 17ß-estradiol (E2), estriol (E3)) in mussels was proposed, which is simple, cheap and easy for use in environmental laboratories. For the first time, the sorbents: PSA (Primary Secondary Amine) and FLORISIL®, placed directly inside the extraction cells, were used for the improvement of the ASE procedure for the isolation of these pollutants from mussel samples. The application of FLORISIL® especially allowed the purification of the extract to increase recovery, without the loss of analytes, or prolongation of the extraction time. The proposed ASE-SPE-GC/MS(SIM) method was validated (the method detection limit values were in the range of 1 ng/g dry weight (d.w.) for IBU to 7 ng/g d.w. for E1; the measurement intermediate precision was between 0.24% and 7.85%; the mean recovery was in the range of 80-118%) and used for the determination of NSAIDs and estrogenic hormones in whole tissue of the mussels Mytilus edulis trossulus collected from the Gulf of Gdansk (southern Baltic Sea). IBU, NAP, DIC and E1 were determined in these samples; however, the pharmaceuticals were found only in smaller (with a length of 2-3 cm) individuals. The observed differences in the concentrations of CEC in smaller and older mussel organisms were fully discussed. Summarizing, this method could be used for monitoring these CEC in such organisms in order to expand our knowledge of their influence on the water ecosystem, however, in such investigations smaller mussel organisms should be used.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/analysis , Biological Products/analysis , Estrogens/analysis , Animals , Mytilus edulis , Solid Phase Extraction
18.
Mar Pollut Bull ; 139: 238-255, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30686425

ABSTRACT

Coastal marine areas of densely populated countries are exposed to a wide array of human activities having an impact on their ecological status. The Baltic Sea is particularly susceptible to pollution by hazardous substances (limited water exchange, shallowness, and large catchment area). Polish media regularly reports ecological catastrophes in the Gulf of Gdansk area caused by eg. shipwrecks leaking. Thus, there is a need of a broad scientific based report on recent contaminant loads and distribution. In this review paper, we report loads of contaminants from different obvious and non-obvious sources. We also gather data on legacy and new emerging contaminant concentrations measured in the Gulf of Gdansk within the last decade (2008-2018). The paper also includes available biological effect measurements performed recently as well as a summary of needs and gaps to be filled for the development of reliable risk assessment.


Subject(s)
Environmental Monitoring/methods , Seawater/chemistry , Water Pollutants, Chemical/analysis , Humans , Oceans and Seas , Poland
19.
Mar Pollut Bull ; 129(2): 787-801, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29100638

ABSTRACT

Concentrations of selected antibiotic compounds from different groups were measured in sediment samples (14 analytes) and in near-bottom water samples (12 analytes) collected in 2011-2013 from the southern Baltic Sea (Polish coastal zone). Antibiotics were determined at concentration levels of a few to hundreds of ng g-1 d.w. in sediments and ng L-1 in near-bottom waters. The most frequently detected compounds were sulfamethoxazole, trimethoprim, oxytetracycline in sediments and sulfamethoxazole and trimethoprim in near-bottom waters. The occurrence of the identified antibiotics was characterized by spatial and temporal variability. A statistically important correlation was observed between sediment organic matter content and the concentrations of sulfachloropyridazine and oxytetracycline. Risk assessment analyses revealed a potential high risk of sulfamethoxazole contamination in near-bottom waters and of contamination by sulfamethoxazole, trimethoprim and tetracyclines in sediments. Both chemical and risk assessment analyses show that the coastal area of the southern Baltic Sea is highly exposed to antibiotic residues.


Subject(s)
Anti-Bacterial Agents/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis , Baltic States , Oceans and Seas , Poland , Risk Assessment
20.
Environ Monit Assess ; 189(4): 175, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28324278

ABSTRACT

Contaminant profiles in sediment cores represent valuable natural archives of environmental contamination, by which contaminant sources and historical changes in contaminant input and cycling may be recognized. In the present study, we discuss the sedimentary profiles and historical trends of organic contaminants - polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) - in three fjords of the Svalbard archipelago differing in environmental conditions and anthropogenic impact. The obtained results revealed no significant differences between the fjords Hornsund and Kongsfjorden, in the average levels of the analyzed contaminants. Levels ranging from 0.05 to 1.47 ng/g d.w. for ∑7 PCBs and from 37.3 to 1973 ng/g d.w. for ∑12 PAHs were measured. The observed spatial and temporal differences in contaminant levels are rather related to local variations in the fjords associated with the location of sampling stations. Higher concentrations of the ∑7 PCBs exceeding 1.00 ng/g d.w. were measured in sediment cores collected in the inner parts of both fjords, which remain under the influence of melting glacier outflows. Important concentrations of these contaminants were noticed in layers deposited recently, suggesting intensive supply of these substances from secondary sources. The observed levels are generally low and well below known established no effect levels. Only the concentration of fluoranthene exceeded the threshold effect level at several sampling stations. Moreover, fluoranthene concentrations in almost all Adventfjorden sediment layer samples were above probable effect levels, which can indicate a risk of adverse effects in exposed benthic organisms. The fluoranthene/pyrene and phenthrene/anthracene ratios, which are used for identification of hydrocarbon sources, suggest a dominance of PAHs of pyrolytic genesis in Kongsfjorden and Hornsund. In Adventfjorden, hydrocarbons of petrogenic origin were predominant. However, other sources like coal dust from stores on land are also possible at this location.


Subject(s)
Environmental Monitoring , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Anthracenes , Estuaries , Fluorenes , Geologic Sediments/chemistry , Pyrenes , Svalbard
SELECTION OF CITATIONS
SEARCH DETAIL
...