Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Antimicrob Agents ; 62(4): 106935, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541530

ABSTRACT

OBJECTIVES: In order to inform and anticipate potential strategies aimed at combating KPC-producing Klebsiella pneumoniae infections, we analysed imipenem/relebactam and ceftazidime/avibactam single-step mutant frequencies, resistance development trajectories, differentially selected resistance mechanisms and their associated fitness cost using four representative high-risk K. pneumoniae clones. METHODS: Mutant frequencies and mutant preventive concentrations were determined using agar plates containing incremental concentrations of ß-lactam/ß-lactamase inhibitor. Resistance dynamics were determined through incubation for 7 days in 10 mL MH tubes containing incremental concentrations of each antibiotic combination up to their 64 × baseline MIC. Two colonies per strain from each experiment were characterized by antimicrobial susceptibility testing, whole genome sequencing and competitive growth assays (to determine in vitro fitness). KPC variants associated with imipenem/relebactam resistance were characterized by cloning and biochemical experiments, atomic models and molecular dynamics simulation studies. RESULTS: Imipenem/relebactam prevented the emergence of single-step resistance mutants at lower concentrations than ceftazidime/avibactam. In three of the four strains evaluated, imipenem/relebactam resistance development emerged more rapidly, and in the ST512/KPC-3 clone reached higher levels compared to baseline MICs than for ceftazidime/avibactam. Lineages evolved in the presence of ceftazidime/avibactam showed KPC substitutions associated with high-level ceftazidime/avibactam resistance, increased imipenem/relebactam susceptibility and low fitness costs. Lineages that evolved in the presence of imipenem/relebactam showed OmpK36 disruption, KPC modifications (S106L, N132S, L167R) and strain-specific substitutions associated with imipenem/relebactam resistance and high fitness costs. Imipenem/relebactam-selected KPC derivatives demonstrated enhanced relebactam resistance through important changes affecting relebactam recognition and positioning. CONCLUSIONS: Our findings anticipate potential resistance mechanisms affecting imipenem/relebactam during treatment of KPC-producing K. pneumoniae infections.

2.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37195077

ABSTRACT

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Subject(s)
Anti-Infective Agents , Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Carbapenems/pharmacology , Siderophores/pharmacology , Cephalosporins/pharmacology , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Cefiderocol
3.
Int J Antimicrob Agents ; 61(4): 106738, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36736925

ABSTRACT

Metallo-ß-lactamase (MBL)-producing Enterobacterales are of particular concern because they are widely disseminated and difficult to treat, being resistant to almost all ß-lactam antibiotics. Aztreonam is not hydrolysed by MBLs but is labile to serine ß-lactamases (SBLs), which are usually co-produced by MBL-producing Enterobacterales. This study investigated the activity of aztreonam in combination with novel ß-lactamase inhibitors (BLIs) against a national multi-centre study collection of strains co-producing MBLs and SBLs. Fifty-five clinical isolates co-producing MBLs (41 VIM producers, 10 NDM producers and 4 IMP producers) and SBLs were selected, and whole-genome sequencing (WGS) was performed. The minimum inhibitory concentration (MIC) values of aztreonam, aztreonam/avibactam, aztreonam/relebactam, aztreonam/zidebactam, aztreonam/taniborbactam, aztreonam/vaborbactam and aztreonam/enmetazobactam were determined. ß-lactam/BLI resistance mechanisms were analysed by WGS. All BLIs decreased the MIC values of aztreonam for strains that were not susceptible to aztreonam. Aztreonam/zidebactam (MIC ≤1 mg/L for 96.4% of isolates), aztreonam/avibactam (MIC ≤1 mg/L for 92.7% of isolates) and aztreonam/taniborbactam (MIC ≤1 mg/L for 87.3 % of isolates) were the most active combinations. For other aztreonam/BLI combinations, 50-70% of the isolates yielded MIC values ≤1 mg/L. WGS data revealed that mutations in PBP3, defective OmpE35/OmpK35 porins, and the presence of extended-spectrum ß-lactamases and class C ß-lactamases were some of the resistance mechanisms involved in reduced susceptibility to aztreonam/BLIs. Combinations of aztreonam with new BLIs show promising activity against Enterobacterales co-producing MBLs and SBLs, particularly aztreonam/zidebactam, aztreonam/avibactam and aztreonam/taniborbactam. The present results show that these novel drugs may represent innovative therapeutic strategies by their use in yet-unexplored combinations as solutions for difficult-to-treat infections.


Subject(s)
Aztreonam , beta-Lactamase Inhibitors , Aztreonam/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics , Spain , Azabicyclo Compounds/pharmacology , Microbial Sensitivity Tests , Drug Combinations
SELECTION OF CITATIONS
SEARCH DETAIL
...