ABSTRACT
The hepatic transport of organic anions was evaluated in taurolithocholate-induced cholestasis in rats. Taurolithocholate (3 mumol per 100 g body wt., i.v.) diminished bile flow by 61%, whereas biliary excretion of bile salts was normalized after 80 min. Tm studies of sulfobromophthalein revealed reduced biliary excretion (-58%) and increased hepatic content of the dye (+75%). Conjugation pattern in bile showed that free sulfobromophthalein was increased by 57%, suggesting that hepatic conjugation was also impaired. This finding, however, could not fully explain the reduced sulfobromophthalein excretion since Tm of its non-metabolizable analog phenol-3,6-dibromophthalein was also decreased (-41%). Compartmental analysis of plasma decay of both dyes revealed that, whereas hepatic uptake was unaltered, canalicular excretion was reduced and reflux from the liver into plasma was increased by the cholestatic agent. Studies on transport of phenol-3,6-dibromophthalein by isolated hepatocytes showed that while uptake was unaffected, the treatment reduced (-36%) the release from hepatocytes preloaded with the dye. Neither glutathione S-transferase activity nor binding of sulfobromophthalein to cytosolic proteins was altered when evaluated in vitro, suggesting that reduced conjugation and enhanced sinusoidal reflux were not due to an irreversible effect of taurolithocholate on this enzyme. In conclusion, taurolithocholate impairs the hepatic transport of organic anions by impairing canalicular excretion and intrahepatic conjugation, as well as by increasing transfer from the liver into the plasma.
Subject(s)
Anions/pharmacokinetics , Cholestasis/chemically induced , Cholestasis/metabolism , Liver/metabolism , Taurolithocholic Acid , Animals , Bile/metabolism , Biological Transport , Cytosol/metabolism , Liver/cytology , Male , Proteins/metabolism , Rats , Rats, Wistar , Sulfobromophthalein/analogs & derivatives , Sulfobromophthalein/pharmacokineticsABSTRACT
The effects of the lysosomotropic agents chloroquine and leupeptin on the taurocholate-stimulated biliary excretion of horseradish peroxidase (HRP) was studied in bile fistula rats. HRP (0.5 mg/100 g body wt) was injected into the portal vein during taurocholate (0.4 mumol/min/100 g body wt) or saline infusion. HRP appeared in bile showing both an early (approx. 5 min) and a late (approx. 25 min) excretion peak. The late peak, which represented about 95% of the total HRP excreted, is due to transcellular vesicular transport. The early peak is mainly due to paracellular leakage although a rapid vesicular transport also contributes. Taurocholate infusion significantly increased the biliary output of HRP (both peaks) and of the endogenous lysosomal enzyme acid phosphatase. Pretreatment with chloroquine or leupeptin inhibited the taurocholate-stimulated late excretion of HRP into bile, without affecting its early excretion. The lysosomotropic agents did not affect the biliary excretion of bile salts but significantly inhibited the taurocholate-stimulated biliary excretion of acid phosphatase. The results are consistent with a role of lysosomes in the taurocholate-stimulated major transcellular vesicular transport of HRP into bile.