Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Toxicol ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639310

ABSTRACT

A modified amphibian metamorphosis assay was performed in which Nieuwkoop and Faber (NF) stage 47 Xenopus laevis larvae were exposed to different concentrations of either perchlorate (ClO4 -) or nitrate (NO3 -) for 32 days. Larvae were exposed to 0.0 (control), 5, 25, 125, 625, and 3125 µg/L ClO4 -, or 0 (control), 23, 71, 217, 660, and 2000 mg/L NO3 -. The primary endpoints were survival, hind limb length (HLL), forelimb emergence and development, developmental stage (including time to NF stage 62 [MT62]), thyroid histopathology, wet weight, and snout-vent length (SVL). Developmental delay as evidenced by altered stage distribution and increased MT62, a higher degree of thyroid follicular cell hypertrophy, and an increase in the prevalence of follicular cell hyperplasia was observed at concentrations ≥125 µg/L ClO4 -. The no observed effect concentration (NOEC) for developmental endpoints was 25.0 µg/L ClO4 - and the NOEC for growth endpoints was 3125 µg/L ClO4 -. Exposure to nitrate did not adversely affect MT62, but a decreasing trend in stage distribution and median developmental stage at ≥217 mg/L NO3 - was observed. No histopathologic effects associated with nitrate exposure were observed. An increasing trend in SVL-normalized HLL was observed at 2000 mg/L NO3 -. Nitrate did not alter larval growth. The NOEC for developmental endpoints was 71 mg/L NO3 -, and 2000 mg/L NO3 - for growth endpoints. The present study provided additional evidence that the effects and potency of nitrate and perchlorate on metamorphosis and growth in X. laevis are considerably different.

3.
Vet Parasitol ; 292: 109413, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33765571

ABSTRACT

Cytauxzoonosis is a tick-borne disease of domestic cats with high mortality and narrow therapeutic window, particularly in the southcentral and southeastern United States. The causative agent is the apicomplexan protozoal parasite Cytauxzoon felis and is primarily transmitted by Amblyomma americanum, the lone star tick. Currently there is no vaccine available to prevent cytauxzoonosis and treatment is often ineffective if not initiated early enough in the course of disease. Early diagnosis and therapeutic intervention are therefore crucial for the survival of infected cats. Several methods are available for diagnosis of cytauxzoonosis, with PCR being the most sensitive. However, current PCR assays, which employ double-stranded DNA intercalating dyes to detect C. felis infection, have inherent limitations such as the potential for false positive detection of non-specific amplification products and inability to provide absolute quantification of parasite load. The objective of this study was to develop a probe-based droplet digital PCR (ddPCR) assay capable of detection and quantification of C. felis load over time and during treatment. The C. felis ddPCR assay was able to (i) reliably detect and quantify C. felis DNA in clinical blood samples from cats with acute cytauxzoonosis and (ii) monitor clinical parasite load in response to anti-protozoal treatment through absolute quantification of C. felis DNA over time. When tested on blood samples from cats with experimental C. felis infection, the assay was able to detect infection in cats as early as 24 h prior to the development of clinical signs. In addition, we demonstrate that this probe-based design can be utilized in traditional real-time PCR systems, with similar detection capabilities as compared to ddPCR. The C. felis probe-based ddPCR was also able to detect infection in samples with lower parasite loads when compared to existing nested PCR assays, although these results were not significant due to small sample size. To the author's knowledge, this is the first reported probe-based ddPCR assay to detect Cytauxzoon felis infection in domestic cats.


Subject(s)
Cat Diseases/diagnosis , Piroplasmida/isolation & purification , Polymerase Chain Reaction/veterinary , Protozoan Infections, Animal/parasitology , Tick-Borne Diseases/veterinary , Animals , Cat Diseases/parasitology , Cats , DNA, Protozoan/analysis , Ixodidae/parasitology , Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...