Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 04 28.
Article in English | MEDLINE | ID: mdl-37114771

ABSTRACT

Ecological and evolutionary dynamics are intrinsically entwined. On short timescales, ecological interactions determine the fate and impact of new mutants, while on longer timescales evolution shapes the entire community. Here, we study the evolution of large numbers of closely related strains with generalized Lotka Volterra interactions but no niche structure. Host-pathogen-like interactions drive the community into a spatiotemporally chaotic state characterized by continual, spatially-local, blooms and busts. Upon the slow serial introduction of new strains, the community diversifies indefinitely, accommodating an arbitrarily large number of strains in spite of the absence of stabilizing niche interactions. The diversifying phase persists - albeit with gradually slowing diversification - in the presence of general, nonspecific, fitness differences between strains, which break the assumption of tradeoffs inherent in much previous work. Building on a dynamical-mean field-theory analysis of the ecological dynamics, an approximate effective model captures the evolution of the diversity and distributions of key properties. This work establishes a potential scenario for understanding how the interplay between evolution and ecology - in particular coevolution of a bacterial and a generalist phage species - could give rise to the extensive fine-scale diversity that is ubiquitous in the microbial world.


Subject(s)
Biological Evolution , Ecosystem
2.
Proc Natl Acad Sci U S A ; 117(25): 14572-14583, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32518107

ABSTRACT

It has recently become apparent that the diversity of microbial life extends far below the species level to the finest scales of genetic differences. Remarkably, extensive fine-scale diversity can coexist spatially. How is this diversity stable on long timescales, despite selective or ecological differences and other evolutionary processes? Most work has focused on stable coexistence or assumed ecological neutrality. We present an alternative: extensive diversity maintained by ecologically driven spatiotemporal chaos, with no assumptions about niches or other specialist differences between strains. We study generalized Lotka-Volterra models with antisymmetric correlations in the interactions inspired by multiple pathogen strains infecting multiple host strains. Generally, these exhibit chaos with increasingly wild population fluctuations driving extinctions. But the simplest spatial structure, many identical islands with migration between them, stabilizes a diverse chaotic state. Some strains (subspecies) go globally extinct, but many persist for times exponentially long in the number of islands. All persistent strains have episodic local blooms to high abundance, crucial for their persistence as, for many, their average population growth rate is negative. Snapshots of the abundance distribution show a power law at intermediate abundances that is essentially indistinguishable from the neutral theory of ecology. But the dynamics of the large populations are much faster than birth-death fluctuations. We argue that this spatiotemporally chaotic "phase" should exist in a wide range of models, and that even in rapidly mixed systems, longer-lived spores could similarly stabilize a diverse chaotic phase.


Subject(s)
Bacterial Physiological Phenomena , Biodiversity , Biological Evolution , Models, Biological , Spatio-Temporal Analysis , Spores, Bacterial/physiology
3.
Theor Popul Biol ; 129: 18-40, 2019 10.
Article in English | MEDLINE | ID: mdl-29246459

ABSTRACT

Genetic exchange in microbes and other facultative sexuals can be rare enough that evolution is almost entirely asexual and populations almost clonal. But the benefits of genetic exchange depend crucially on the diversity of genotypes in a population. How very rare recombination together with the accumulation of new mutations shapes the diversity of large populations and gives rise to faster adaptation is still poorly understood. This paper analyzes a particularly simple model: organisms with two asexual chromosomes that can reassort during rare matings that occur at a rate r. The speed of adaptation for large population sizes, N, is found to depend on the ratio ∼log(Nr)∕log(N). For larger populations, the r needed to yield the same speed decreases as a power of N. Remarkably, the population undergoes spontaneous oscillations alternating between phases when the fittest individuals are created by mutation and when they are created by reassortment, which - in contrast to conventional regimes - decreases the diversity. Between the two phases, the mean fitness jumps rapidly. The oscillatory dynamics and the strong fluctuations this induces have implications for the diversity and coalescent statistics. The results are potentially applicable to large microbial populations, especially viruses that have a small number of chromosomes. Some of the key features may be more broadly applicable for large populations with other types of rare genetic exchange.


Subject(s)
Biological Evolution , Genetics, Population , Reproduction, Asexual , Humans , Recombination, Genetic
4.
Proc Natl Acad Sci U S A ; 115(42): E9842-E9848, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30266791

ABSTRACT

Ecologists debate the relative importance of selective vs. neutral processes in understanding biodiversity. This debate is especially pertinent to microbial communities, which play crucial roles in areas such as health, disease, industry, and the environment. Here, we created a synthetic microbial community using heritable genetic barcodes and tracked community composition over repeated rounds of subculture with immigration. Consistent with theory, we find a transition exists between neutral and selective regimes, and the crossover point depends on the fraction of immigrants and the magnitude of fitness differences. Neutral models predict an increase in diversity with increased carrying capacity, while our selective model predicts a decrease in diversity. The community here lost diversity with an increase in carrying capacity, highlighting that using the correct model is essential for predicting community response to change. Together, these results emphasize the importance of including selection to obtain realistic models of even simple systems.


Subject(s)
Biodiversity , Ecosystem , Microbial Consortia/physiology , Models, Theoretical , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL