Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Rural Remote Health ; 23(1): 8087, 2023 01.
Article in English | MEDLINE | ID: mdl-36802864

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has had a significant impact on the health and wellbeing of people worldwide. General practices were forced to adapt to constantly changing circumstances, leading to predominance of virtual consultations. The aim of this study was to examine the impact the pandemic had on the ability of patients to access general practice. Other focuses included determining the nature of changes to appointment cancellations or delays and the level of disruption to long-term medication regimes during this period. METHODS: A 25-question online survey was administered using Qualtrics®. Adult patients of Irish general practices were recruited via social media between October 2020 and February 2021. The data were examined for associations between participant groupings and key findings using chi-squared tests. RESULTS: 670 persons participated. Half of all doctor-patient consultations during that time were completed virtually, predominantly via telephone. Overall, 497 (78%) participants accessed their healthcare teams as scheduled, and without disruption. 18% of participants (n=104) reported difficulty in accessing their long-term medications; those who were younger, and those who typically attend general practice on a quarterly or more basis, were associated most with this disruption (p<0.05; p<0.05). DISCUSSION: Despite the COVID-19 pandemic, Irish general practice has maintained its schedule for appointments in greater than three quarters of cases. There was a clear shift away from face-to-face consultations to telephone appointments. Maintaining the prescription of long-term medications for patients remains a challenge. Further work needs to be done to ensure the continuation of care and undisrupted medication schedules during any future pandemics.


Subject(s)
COVID-19 , General Practice , Social Media , Humans , Adult , Pandemics , Cross-Sectional Studies
2.
Ann Fam Med ; (20 Suppl 1)2022 04 01.
Article in English | MEDLINE | ID: mdl-36706378

ABSTRACT

Background/Aim: Since the onset of the COVID-19 pandemic, virtual consultations have become commonplace, and access to healthcare more complex. The study was designed to examine the impact COVID-19 has had on access to general practice care in Ireland. Methods: A 25-question online survey was designed in Qualtrics®. Adult patients of Irish general practices were recruited via social media between October 2020 and February 2021 and volunteered their opinions. Results: 670 persons participated. Half of all doctor-patient consultations were now completed virtually-predominantly via telephone. Overall, 497 (78%) participants accessed their healthcare teams as scheduled, and without disruption. 18% of participants (n=104) reported difficulty in accessing their long-term medications; those who are younger, and those who typically attend general practice quarterly or more, were associated most with this disruption (p<0.05). Fifty-nine instances where a new health concern was subject to an appointment cancellation or rescheduling were reported. Conclusions: Despite the COVID-19 pandemic, Irish general practice has maintained its schedule for appointments in 78% of cases despite the challenges of the pandemic. Half of consultations were provided virtually; teleconsultation use was very infrequent. Maintaining the supply chain for long-term medications for patients remains a challenge during a pandemic. Authors accept that study participants were confined to those who use social media. A protocol may need to be designed by each practice to optimize the continuation of care and of medication schedules during any future pandemics.


Subject(s)
COVID-19 , General Practice , Remote Consultation , Social Media , Humans , Adult , COVID-19/epidemiology , Pandemics , Cross-Sectional Studies , Physician-Patient Relations
3.
J Immunol ; 204(9): 2392-2400, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213561

ABSTRACT

Deregulation of mRNA translation engenders many human disorders, including obesity, neurodegenerative diseases, and cancer, and is associated with pathogen infections. The role of eIF4E-dependent translational control in macrophage inflammatory responses in vivo is largely unexplored. In this study, we investigated the involvement of the translation inhibitors eIF4E-binding proteins (4E-BPs) in the regulation of macrophage inflammatory responses in vitro and in vivo. We show that the lack of 4E-BPs exacerbates inflammatory polarization of bone marrow-derived macrophages and that 4E-BP-null adipose tissue macrophages display enhanced inflammatory gene expression following exposure to a high-fat diet (HFD). The exaggerated inflammatory response in HFD-fed 4E-BP-null mice coincides with significantly higher weight gain, higher Irf8 mRNA translation, and increased expression of IRF8 in adipose tissue compared with wild-type mice. Thus, 4E-BP-dependent translational control limits, in part, the proinflammatory response during HFD. These data underscore the activity of the 4E-BP-IRF8 axis as a paramount regulatory mechanism of proinflammatory responses in adipose tissue macrophages.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adipose Tissue/metabolism , Inflammation/genetics , Interferon Regulatory Factors/genetics , Macrophages/metabolism , Protein Biosynthesis/genetics , Animals , Bone Marrow/metabolism , Diet, High-Fat/methods , Eukaryotic Initiation Factor-4E/genetics , Gene Expression/genetics , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
PLoS Pathog ; 14(8): e1007264, 2018 08.
Article in English | MEDLINE | ID: mdl-30138450

ABSTRACT

Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis.


Subject(s)
Herpes Simplex/pathology , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Immediate-Early Proteins/genetics , Neoplasms/virology , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Catalytic Domain/drug effects , Cell Cycle Proteins , Cells, Cultured , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Herpes Simplex/complications , Herpes Simplex/genetics , Humans , Immediate-Early Proteins/deficiency , Mice , Neoplasms/complications , Neoplasms/genetics , Neoplasms/pathology , Organisms, Genetically Modified , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/chemistry , Ubiquitin-Protein Ligases/deficiency , Vero Cells
5.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28918902

ABSTRACT

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Subject(s)
Membrane Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Dynamics , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Apoptosis , CRISPR-Cas Systems , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival , Dynamins/genetics , Dynamins/metabolism , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1 , Membrane Proteins/genetics , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitochondrial Dynamics/drug effects , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , RNA Interference , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Transfection
6.
Proc Natl Acad Sci U S A ; 113(44): 12360-12367, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27791185

ABSTRACT

Translational control of gene expression plays a key role during the early phases of embryonic development. Here we describe a transcriptional regulator of mouse embryonic stem cells (mESCs), Yin-yang 2 (YY2), that is controlled by the translation inhibitors, Eukaryotic initiation factor 4E-binding proteins (4E-BPs). YY2 plays a critical role in regulating mESC functions through control of key pluripotency factors, including Octamer-binding protein 4 (Oct4) and Estrogen-related receptor-ß (Esrrb). Importantly, overexpression of YY2 directs the differentiation of mESCs into cardiovascular lineages. We show that the splicing regulator Polypyrimidine tract-binding protein 1 (PTBP1) promotes the retention of an intron in the 5'-UTR of Yy2 mRNA that confers sensitivity to 4E-BP-mediated translational suppression. Thus, we conclude that YY2 is a major regulator of mESC self-renewal and lineage commitment and document a multilayer regulatory mechanism that controls its expression.


Subject(s)
Alternative Splicing/physiology , Cell Differentiation , Cell Self Renewal/physiology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Animals , Blastocyst/metabolism , Carrier Proteins/metabolism , Cell Lineage , Cell Self Renewal/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Introns , Mice , Mice, Knockout , Models, Biological , Octamer Transcription Factor-3/metabolism , Phosphoproteins , Polypyrimidine Tract-Binding Protein/genetics , Protein Biosynthesis/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Estrogen/metabolism , Transcription Factors/genetics , Transcription, Genetic/physiology , YY1 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL