Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(1): 113596, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38117652

ABSTRACT

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I , HLA Antigens , Histocompatibility Antigens , CD8-Positive T-Lymphocytes , Peptides
2.
bioRxiv ; 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37398281

ABSTRACT

Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.

3.
Med ; 3(12): 883-900.e13, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36198312

ABSTRACT

BACKGROUND: Universities are vulnerable to infectious disease outbreaks, making them ideal environments to study transmission dynamics and evaluate mitigation and surveillance measures. Here, we analyze multimodal COVID-19-associated data collected during the 2020-2021 academic year at Colorado Mesa University and introduce a SARS-CoV-2 surveillance and response framework. METHODS: We analyzed epidemiological and sociobehavioral data (demographics, contact tracing, and WiFi-based co-location data) alongside pathogen surveillance data (wastewater and diagnostic testing, and viral genomic sequencing of wastewater and clinical specimens) to characterize outbreak dynamics and inform policy. We applied relative risk, multiple linear regression, and social network assortativity to identify attributes or behaviors associated with contracting SARS-CoV-2. To characterize SARS-CoV-2 transmission, we used viral sequencing, phylogenomic tools, and functional assays. FINDINGS: Athletes, particularly those on high-contact teams, had the highest risk of testing positive. On average, individuals who tested positive had more contacts and longer interaction durations than individuals who never tested positive. The distribution of contacts per individual was overdispersed, although not as overdispersed as the distribution of phylogenomic descendants. Corroboration via technical replicates was essential for identification of wastewater mutations. CONCLUSIONS: Based on our findings, we formulate a framework that combines tools into an integrated disease surveillance program that can be implemented in other congregate settings with limited resources. FUNDING: This work was supported by the National Science Foundation, the Hertz Foundation, the National Institutes of Health, the Centers for Disease Control and Prevention, the Massachusetts Consortium on Pathogen Readiness, the Howard Hughes Medical Institute, the Flu Lab, and the Audacious Project.


Subject(s)
COVID-19 , SARS-CoV-2 , United States , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Disease Outbreaks , Universities , Contact Tracing
4.
Nat Microbiol ; 7(1): 108-119, 2022 01.
Article in English | MEDLINE | ID: mdl-34907347

ABSTRACT

The global spread and continued evolution of SARS-CoV-2 has driven an unprecedented surge in viral genomic surveillance. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine laboratory processes and results. This challenge will increase with the expanding global production of sequences across a variety of laboratories for epidemiological and clinical interpretation, as well as for genomic surveillance of emerging diseases in future outbreaks. We present SDSI + AmpSeq, an approach that uses 96 synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination throughout the sequencing workflow. We apply SDSIs to the ARTIC Consortium's amplicon design, demonstrate their utility and efficiency in a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases and validate them across 6,676 diagnostic samples at multiple laboratories. We establish that SDSI + AmpSeq provides increased confidence in genomic data by detecting and correcting for relatively common, yet previously unobserved modes of error, including spillover and sample swaps, without impacting genome recovery.


Subject(s)
DNA Primers/standards , SARS-CoV-2/genetics , Sequence Analysis/standards , COVID-19/diagnosis , DNA Primers/chemical synthesis , Genome, Viral/genetics , Humans , Quality Control , RNA, Viral/genetics , Reproducibility of Results , Sequence Analysis/methods , Whole Genome Sequencing , Workflow
5.
STAR Protoc ; 3(4): 101910, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595954

ABSTRACT

Immunopeptidome profiling of infected cells is a powerful technique for detecting viral peptides that are naturally processed and loaded onto class I human leukocyte antigens (HLAs-I). Here, we provide a protocol for preparing samples for immunopeptidome profiling that can inactivate enveloped viruses while still preserving the integrity of the HLA-I complex. We detail steps for lysate preparation of infected cells followed by HLA-I immunoprecipitation and virus inactivation. We further describe peptide purification for mass spectrometry outside a high-containment facility. For complete details on the use and execution of this protocol, please refer to Weingarten-Gabbay et al. (2021).1.


Subject(s)
Histocompatibility Antigens Class I , Viruses , Humans , Peptides/chemistry , Mass Spectrometry
6.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34171305

ABSTRACT

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Open Reading Frames/genetics , Peptides/immunology , Proteome/immunology , SARS-CoV-2/immunology , A549 Cells , Alleles , Amino Acid Sequence , Animals , Antigen Presentation/immunology , COVID-19/immunology , COVID-19/virology , Female , HEK293 Cells , Humans , Kinetics , Male , Mice , Peptides/chemistry , T-Lymphocytes/immunology
7.
bioRxiv ; 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33758855

ABSTRACT

The rapid global spread and continued evolution of SARS-CoV-2 has highlighted an unprecedented need for viral genomic surveillance and clinical viral sequencing. Amplicon-based sequencing methods provide a sensitive, low-cost and rapid approach but suffer a high potential for contamination, which can undermine lab processes and results. This challenge will only increase with expanding global production of sequences by diverse research groups for epidemiological and clinical interpretation. We present an approach which uses synthetic DNA spike-ins (SDSIs) to track samples and detect inter-sample contamination through a sequencing workflow. Applying this approach to the ARTIC Consortium's amplicon design, we define a series of best practices for Illumina-based sequencing and provide a detailed characterization of approaches to increase sensitivity for low-viral load samples incorporating the SDSIs. We demonstrate the utility and efficiency of the SDSI method amidst a real-time investigation of a suspected hospital cluster of SARS-CoV-2 cases.

8.
bioRxiv ; 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33024965

ABSTRACT

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.

9.
Genes (Basel) ; 10(1)2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591691

ABSTRACT

Covalent DNA protein crosslinks (DPCs) are common lesions that block replication. We examine here the consequence of DPCs on mutagenesis involving replicational template-switch reactions in Escherichia coli. 5-Azacytidine (5-azaC) is a potent mutagen for template-switching. This effect is dependent on DNA cytosine methylase (Dcm), implicating the Dcm-DNA covalent complex trapped by 5-azaC as the initiator for mutagenesis. The leading strand of replication is more mutable than the lagging strand, which can be explained by blocks to the replicative helicase and/or fork regression. We find that template-switch mutagenesis induced by 5-azaC does not require double strand break repair via RecABCD; the ability to induce the SOS response is anti-mutagenic. Mutants in recB, but not recA, exhibit high constitutive rates of template-switching, and we suggest that RecBCD-mediated DNA degradation prevents template-switching associated with fork regression. A mutation in the DnaB fork helicase also promotes high levels of template-switching. We also find that other DPC-inducers, formaldehyde (a non-specific crosslinker) and ciprofloxacin (a topoisomerase II poison) are also strong mutagens for template-switching with similar genetic properties. Induction of mutations and genetic rearrangements that occur by template-switching may constitute a previously unrecognized component of the genotoxicity and genetic instability promoted by DPCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...