Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Hum Brain Mapp ; 44(17): 5729-5748, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37787573

ABSTRACT

Despite the known benefits of data-driven approaches, the lack of approaches for identifying functional neuroimaging patterns that capture both individual variations and inter-subject correspondence limits the clinical utility of rsfMRI and its application to single-subject analyses. Here, using rsfMRI data from over 100k individuals across private and public datasets, we identify replicable multi-spatial-scale canonical intrinsic connectivity network (ICN) templates via the use of multi-model-order independent component analysis (ICA). We also study the feasibility of estimating subject-specific ICNs via spatially constrained ICA. The results show that the subject-level ICN estimations vary as a function of the ICN itself, the data length, and the spatial resolution. In general, large-scale ICNs require less data to achieve specific levels of (within- and between-subject) spatial similarity with their templates. Importantly, increasing data length can reduce an ICN's subject-level specificity, suggesting longer scans may not always be desirable. We also find a positive linear relationship between data length and spatial smoothness (possibly due to averaging over intrinsic dynamics), suggesting studies examining optimized data length should consider spatial smoothness. Finally, consistency in spatial similarity between ICNs estimated using the full data and subsets across different data lengths suggests lower within-subject spatial similarity in shorter data is not wholly defined by lower reliability in ICN estimates, but may be an indication of meaningful brain dynamics which average out as data length increases.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results , Nerve Net/diagnostic imaging , Brain/diagnostic imaging
2.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503085

ABSTRACT

Background: Recent advances in resting-state fMRI allow us to study spatial dynamics, the phenomenon of brain networks spatially evolving over time. However, most dynamic studies still use subject-specific, spatially-static nodes. As recent studies have demonstrated, incorporating time-resolved spatial properties is crucial for precise functional connectivity estimation and gaining unique insights into brain function. Nevertheless, estimating time-resolved networks poses challenges due to the low signal-to-noise ratio, limited information in short time segments, and uncertain identification of corresponding networks within and between subjects. Methods: We adapt a reference-informed network estimation technique to capture time-resolved spatial networks and their dynamic spatial integration and segregation. We focus on time-resolved spatial functional network connectivity (spFNC), an estimate of network spatial coupling, to study sex-specific alterations in schizophrenia and their links to multi-factorial genomic data. Results: Our findings are consistent with the dysconnectivity and neurodevelopment hypotheses and align with the cerebello-thalamo-cortical, triple-network, and frontoparietal dysconnectivity models, helping to unify them. The potential unification offers a new understanding of the underlying mechanisms. Notably, the posterior default mode/salience spFNC exhibits sex-specific schizophrenia alteration during the state with the highest global network integration and correlates with genetic risk for schizophrenia. This dysfunction is also reflected in high-dimensional (voxel-level) space in regions with weak functional connectivity to corresponding networks. Conclusions: Our method can effectively capture spatially dynamic networks, detect nuanced SZ effects, and reveal the intricate relationship of dynamic information to genomic data. The results also underscore the potential of dynamic spatial dependence and weak connectivity in the clinical landscape.

3.
Psychiatry Res ; 324: 115227, 2023 06.
Article in English | MEDLINE | ID: mdl-37121219

ABSTRACT

Social-emotional deficits in psychosis may be indexed by deviations in emotional scene processing, but event-related potential (ERP) studies indicate such deviations may not map cleanly to diagnostic categories. Neurobiologically defined psychosis subgroups offer an alternative that may better capture neurophysiological correlates of social-emotional deficits. The current study investigates emotional scene-elicited ERPs in Biotypes of psychosis in a large (N = 622), well-characterized sample. Electroencephalography was recorded in healthy persons (N = 129), Biotype-1 (N = 195), Biotype-2 (N = 131), and Biotype-3 (N = 167) psychosis cases. ERPs were measured from posterior and centroparietal scalp locations. Neural responses to emotional scenes were compared between healthy and psychosis groups. Multivariate group discrimination analyses resulted in two composite variates that differentiated groups. The first variate displayed large differences between low-cognition (Biotype-1, Biotype-2) and intact-cognition groups (Biotype-3, healthy persons). The second indicated a small-to-moderate distinction of Biotypes-2 and -3 from Biotype-1 and healthy persons. Two multivariate correlations were identified indicating associations between 1) self-reported emotional experience and generalized cognition and 2) socio-occupational functioning and late-stage emotional processing. Psychosis Biotypes displayed emotional processing deficits not apparent in DSM psychosis subgroups. Future translational research may benefit from exploring emotional scene processing in such neurobiologically-defined psychosis groups.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Brain/physiology , Psychotic Disorders/psychology , Emotions/physiology , Evoked Potentials/physiology , Electroencephalography
4.
Neuroimage ; 251: 119013, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35189361

ABSTRACT

Resting-state functional magnetic resonance imaging is currently the mainstay of functional neuroimaging and has allowed researchers to identify intrinsic connectivity networks (aka functional networks) at different spatial scales. However, little is known about the temporal profiles of these networks and whether it is best to model them as continuous phenomena in both space and time or, rather, as a set of temporally discrete events. Both categories have been supported by series of studies with promising findings. However, a critical question is whether focusing only on time points presumed to contain isolated neural events and disregarding the rest of the data is missing important information, potentially leading to misleading conclusions. In this work, we argue that brain networks identified within the spontaneous blood oxygenation level-dependent (BOLD) signal are not limited to temporally sparse burst moments and that these event present time points (EPTs) contain valuable but incomplete information about the underlying functional patterns. We focus on the default mode and show evidence that is consistent with its continuous presence in the BOLD signal, including during the event absent time points (EATs), i.e., time points that exhibit minimum activity and are the least likely to contain an event. Moreover, our findings suggest that EPTs may not contain all the available information about their corresponding networks. We observe distinct default mode connectivity patterns obtained from all time points (AllTPs), EPTs, and EATs. We show evidence of robust relationships with schizophrenia symptoms that are both common and unique to each of the sets of time points (AllTPs, EPTs, EATs), likely related to transient patterns of connectivity. Together, these findings indicate the importance of leveraging the full temporal data in functional studies, including those using event-detection approaches.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping/methods , Functional Neuroimaging , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
5.
Neuroimage ; 180(Pt B): 619-631, 2018 10 15.
Article in English | MEDLINE | ID: mdl-28939432

ABSTRACT

The human brain is a highly dynamic system with non-stationary neural activity and rapidly-changing neural interaction. Resting-state dynamic functional connectivity (dFC) has been widely studied during recent years, and the emerging aberrant dFC patterns have been identified as important features of many mental disorders such as schizophrenia (SZ). However, only focusing on the time-varying patterns in FC is not enough, since the local neural activity itself (in contrast to the inter-connectivity) is also found to be highly fluctuating from research using high-temporal-resolution imaging techniques. Exploring the time-varying patterns in brain activity and their relationships with time-varying brain connectivity is important for advancing our understanding of the co-evolutionary property of brain network and the underlying mechanism of brain dynamics. In this study, we introduced a framework for characterizing time-varying brain activity and exploring its associations with time-varying brain connectivity, and applied this framework to a resting-state fMRI dataset including 151 SZ patients and 163 age- and gender matched healthy controls (HCs). In this framework, 48 brain regions were first identified as intrinsic connectivity networks (ICNs) using group independent component analysis (GICA). A sliding window approach was then adopted for the estimation of dynamic amplitude of low-frequency fluctuation (dALFF) and dFC, which were used to measure time-varying brain activity and time-varying brain connectivity respectively. The dALFF was further clustered into six reoccurring states by the k-means clustering method and the group difference in occurrences of dALFF states was explored. Lastly, correlation coefficients between dALFF and dFC were calculated and the group difference in these dALFF-dFC correlations was explored. Our results suggested that 1) ALFF of brain regions was highly fluctuating during the resting-state and such dynamic patterns are altered in SZ, 2) dALFF and dFC were correlated in time and their correlations are altered in SZ. The overall results support and expand prior work on abnormalities of brain activity, static FC (sFC) and dFC in SZ, and provide new evidence on aberrant time-varying brain activity and its associations with brain connectivity in SZ, which might underscore the disrupted brain cognitive functions in this mental disorder.


Subject(s)
Brain Mapping/methods , Brain/physiology , Nerve Net/physiology , Schizophrenia/physiopathology , Adult , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neural Pathways/physiology , Schizophrenia/diagnostic imaging
6.
Schizophr Res ; 192: 300-307, 2018 02.
Article in English | MEDLINE | ID: mdl-28545944

ABSTRACT

Patients with schizophrenia show a deficit in cognitive ability compared to estimated premorbid and familial intellectual abilities. However, the degree to which this pattern holds across psychotic disorders and is familial is unclear. The present study examined deviation from expected cognitive level in schizophrenia, schizoaffective disorder, and psychotic bipolar disorder probands and their first-degree relatives. Using a norm-based regression approach, parental education and WRAT-IV Reading scores (both significant predictors of cognitive level in the healthy control group) were used to predict global neuropsychological function as measured by the composite score from the Brief Assessment of Cognition in Schizophrenia (BACS) test in probands and relatives. When compared to healthy control group, psychotic probands showed a significant gap between observed and predicted BACS composite scores and a greater likelihood of robust cognitive decline. This effect was not seen in unaffected relatives. While BACS and WRAT-IV Reading scores were themselves highly familial, the decline in cognitive function from expectation had lower estimates of familiality. Thus, illness-related factors such as epigenetic, treatment, or pathophysiological factors may be important causes of illness related decline in cognitive abilities across psychotic disorders. This is consistent with the markedly greater level of cognitive impairment seen in affected individuals compared to their unaffected family members.


Subject(s)
Cognition Disorders/etiology , Family , Psychotic Disorders/complications , Psychotic Disorders/psychology , Recognition, Psychology/physiology , Adult , Cognition Disorders/diagnosis , Family/psychology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Predictive Value of Tests , Psychiatric Status Rating Scales , Statistics, Nonparametric , Young Adult
7.
Transl Psychiatry ; 7(10): e1249, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29064472

ABSTRACT

Eye movement deviations, particularly deficits of initial sensorimotor processing and sustained pursuit maintenance, and antisaccade inhibition errors, are established intermediate phenotypes for psychotic disorders. We here studied eye movement measures of 849 participants from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study (schizophrenia N=230, schizoaffective disorder N=155, psychotic bipolar disorder N=206 and healthy controls N=258) as quantitative phenotypes in relation to genetic data, while controlling for genetically derived ancestry measures, age and sex. A mixed-modeling genome-wide association studies approach was used including ~4.4 million genotypes (PsychChip and 1000 Genomes imputation). Across participants, sensorimotor processing at pursuit initiation was significantly associated with a single nucleotide polymorphism in IPO8 (12p11.21, P=8 × 10-11), whereas suggestive associations with sustained pursuit maintenance were identified with SNPs in SH3GL2 (9p22.2, P=3 × 10-8). In participants of predominantly African ancestry, sensorimotor processing was also significantly associated with SNPs in PCDH12 (5q31.3, P=1.6 × 10-10), and suggestive associations were observed with NRSN1 (6p22.3, P=5.4 × 10-8) and LMO7 (13q22.2, P=7.3x10-8), whereas antisaccade error rate was significantly associated with a non-coding region at chromosome 7 (P=6.5 × 10-9). Exploratory pathway analyses revealed associations with nervous system development and function for 40 top genes with sensorimotor processing and pursuit maintenance (P=4.9 × 10-2-9.8 × 10-4). Our findings suggest novel patterns of genetic variation relevant for brain systems subserving eye movement control known to be impaired in psychotic disorders. They include genes involved in nuclear trafficking and gene silencing (IPO8), fast axonal guidance and synaptic specificity (PCDH12), transduction of nerve signals (NRSN1), retinal degeneration (LMO7), synaptic glutamate release (SH3GL2), and broader nervous system development and function.


Subject(s)
Psychotic Disorders/genetics , Psychotic Disorders/physiopathology , Pursuit, Smooth , Saccades , Adult , Bipolar Disorder/complications , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Female , Genome-Wide Association Study , Genotype , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , Psychotic Disorders/complications , Schizophrenia/complications , Schizophrenia/genetics , Schizophrenia/physiopathology
8.
Transl Psychiatry ; 6(5): e824, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27244233

ABSTRACT

Schizophrenia (SZ) and bipolar disorder (BD) are known to share genetic risks. In this work, we conducted whole-genome scanning to identify cross-disorder and disorder-specific copy number variants (CNVs) for these two disorders. The Database of Genotypes and Phenotypes (dbGaP) data were used for discovery, deriving from 2416 SZ patients, 592 BD patients and 2393 controls of European Ancestry, as well as 998 SZ patients, 121 BD patients and 822 controls of African Ancestry. PennCNV and Birdsuite detected high-confidence CNVs that were aggregated into CNV regions (CNVRs) and compared with the database of genomic variants for confirmation. Then, large (size⩾500 kb) and small common CNVRs (size <500 kb, frequency⩾1%) were examined for their associations with SZ and BD. Particularly for the European Ancestry samples, the dbGaP findings were further evaluated in the Wellcome Trust Case Control Consortium (WTCCC) data set for replication. Previously implicated variants (1q21.1, 15q13.3, 16p11.2 and 22q11.21) were replicated. Some cross-disorder variants were noted to differentially affect SZ and BD, including CNVRs in chromosomal regions encoding immunoglobulins and T-cell receptors that were associated more with SZ, and the 10q11.21 small CNVR (GPRIN2) associated more with BD. Disorder-specific CNVRs were also found. The 22q11.21 CNVR (COMT) and small CNVRs in 11p15.4 (TRIM5) and 15q13.2 (ARHGAP11B and FAN1) appeared to be SZ-specific. CNVRs in 17q21.2, 9p21.3 and 9q21.13 might be BD-specific. Overall, our primary findings in individual disorders largely echo previous reports. In addition, the comparison between SZ and BD reveals both specific and common risk CNVs. Particularly for the latter, differential involvement is noted, motivating further comparative studies and quantitative models.


Subject(s)
Bipolar Disorder/genetics , Bipolar Disorder/psychology , DNA Copy Number Variations/genetics , Schizophrenia/genetics , Schizophrenic Psychology , Adult , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Male , Phenotype , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Sensitivity and Specificity
9.
Eur Psychiatry ; 36: 47-54, 2016 08.
Article in English | MEDLINE | ID: mdl-27318301

ABSTRACT

BACKGROUND: Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. METHODS: Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. RESULTS: Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2-q21.2, LOD=3.322) and a broad anxiety phenotype (12q24.32-q24.33, LOD=2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg=0.550-0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1-q33.2, LOD=3.054) and drug dependence-anxiety (18p11.23-p11.22, LOD=3.425). CONCLUSIONS: This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics.


Subject(s)
Anxiety Disorders/genetics , Behavior, Addictive/genetics , Hispanic or Latino/statistics & numerical data , Pedigree , Substance-Related Disorders/genetics , Adult , Alcoholism/genetics , Anxiety Disorders/ethnology , Behavior, Addictive/ethnology , Comorbidity , Female , Genetic Linkage , Humans , Male , Middle Aged , Phenotype , Substance-Related Disorders/ethnology
10.
Mol Psychiatry ; 21(12): 1710-1716, 2016 12.
Article in English | MEDLINE | ID: mdl-26857596

ABSTRACT

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case-control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen's d=-0.232; P=3.50 × 10-7) and thalamus (d=-0.148; P=4.27 × 10-3) and enlarged lateral ventricles (d=-0.260; P=3.93 × 10-5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.


Subject(s)
Bipolar Disorder/physiopathology , Brain/physiopathology , Adult , Brain/anatomy & histology , Case-Control Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Organ Size/physiology , Retrospective Studies
12.
Schizophr Res ; 170(1): 156-61, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26645510

ABSTRACT

Despite robust evidence of neurocognitive dysfunction in psychotic patients, the degree of similarity in cognitive architecture across psychotic disorders and among their respective first-degree relatives is not well delineated. The present study examined the latent factor structure of the Brief Assessment of Cognition in Schizophrenia (BACS) neuropsychological battery. Analyses were conducted on 783 psychosis spectrum probands (schizophrenia, schizoaffective, psychotic bipolar), 887 of their first-degree relatives, and 396 non-psychiatric controls from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) consortium. Exploratory factor analysis of BACS subtest scores indicated a single-factor solution that was similar across all groups and provided the best overall data fit in confirmatory analyses. Correlations between the standard BACS composite score and the sum of subscale scores weighted by their loadings on this unitary factor were very high in all groups (r≥.99). Thus, the BACS assesses a similar unitary cognitive construct in probands with different psychotic disorders, in their first-degree relatives, and in healthy controls, and this factor is well measured by the test's standard composite score.


Subject(s)
Bipolar Disorder/psychology , Cognition , Family , Models, Psychological , Psychotic Disorders/psychology , Schizophrenic Psychology , Adult , Bipolar Disorder/diagnosis , Factor Analysis, Statistical , Female , Genetic Predisposition to Disease , Humans , Male , Neuropsychological Tests , Psychotic Disorders/diagnosis , Schizophrenia/diagnosis
13.
Mol Psychiatry ; 21(4): 547-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26033243

ABSTRACT

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Subject(s)
Brain/pathology , Schizophrenia/pathology , Adult , Brain/diagnostic imaging , Brain Mapping , Case-Control Studies , Female , Functional Laterality , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Prospective Studies , Schizophrenia/genetics
14.
Transl Psychiatry ; 5: e588, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26101851

ABSTRACT

Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.


Subject(s)
Bipolar Disorder/genetics , Delta Rhythm/genetics , Schizophrenia/genetics , Theta Rhythm/genetics , Adult , Bipolar Disorder/physiopathology , Brain/growth & development , Brain Waves/genetics , Brain Waves/physiology , Case-Control Studies , Cell Adhesion/genetics , Delta Rhythm/physiology , Electroencephalography , Female , Humans , Male , Middle Aged , Multivariate Analysis , Neurogenesis/genetics , Polymorphism, Single Nucleotide , Schizophrenia/physiopathology , Theta Rhythm/physiology , Young Adult
15.
J Psychiatr Res ; 61: 180-7, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25563516

ABSTRACT

Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.


Subject(s)
Antimanic Agents/therapeutic use , Bipolar Disorder/pathology , Cerebral Cortex/drug effects , Hippocampus/drug effects , Lithium Compounds/therapeutic use , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Bipolar Disorder/drug therapy , Cerebral Cortex/pathology , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Young Adult
16.
Psychol Med ; 45(1): 97-108, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25066779

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) and psychotic bipolar disorder (PBD) share considerable overlap in clinical features, genetic risk factors and co-occurrence among relatives. The common and unique functional cerebral deficits in these disorders, and in unaffected relatives, remain to be identified. METHOD: A total of 59 healthy controls, 37 SCZ and 57 PBD probands and their unaffected first-degree relatives (38 and 28, respectively) were studied using resting-state functional magnetic resonance imaging (rfMRI). Regional cerebral function was evaluated by measuring the amplitude of low-frequency fluctuations (ALFF). Areas with ALFF alterations were used as seeds in whole-brain functional connectivity analysis. We then tested whether abnormalities identified in probands were present in unaffected relatives. RESULTS: SCZ and PBD probands both demonstrated regional hypoactivity in the orbital frontal cortex and cingulate gyrus, as well as abnormal connectivity within striatal-thalamo-cortical networks. SCZ probands showed greater and more widely distributed ALFF alterations including the thalamus and bilateral parahippocampal gyri. Increased parahippocampal ALFF was related to positive symptoms and cognitive deficit. PBD patients showed uniquely increased functional connectivity between the thalamus and bilateral insula. Only PBD relatives showed abnormal connectivity within striatal-thalamo-cortical networks seen in both proband groups. CONCLUSIONS: The present findings reveal a common pattern of deficits in frontostriatal circuitry across SCZ and PBD, and unique regional and functional connectivity abnormalities that distinguish them. The abnormal network connectivity in PBD relatives that was present in both proband groups may reflect genetic susceptibility associated with risk for psychosis, but within-family associations of this measure were not high.


Subject(s)
Bipolar Disorder/physiopathology , Brain/physiopathology , Schizophrenia/physiopathology , Adult , Aged , Analysis of Variance , Antipsychotic Agents/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Chlorpromazine/therapeutic use , Family , Female , Genetic Predisposition to Disease , Humans , Interview, Psychological , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , Schizophrenia/genetics , Young Adult
17.
Transl Psychiatry ; 4: e451, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25268255

ABSTRACT

Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype-phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors.


Subject(s)
Genetic Association Studies , Genotype , Impulsive Behavior/physiology , Polymorphism, Single Nucleotide/genetics , Adolescent , Adult , Female , Humans , Longitudinal Studies , Male , Self Report , Surveys and Questionnaires , Task Performance and Analysis , Young Adult
18.
Neuroimage Clin ; 5: 298-308, 2014.
Article in English | MEDLINE | ID: mdl-25161896

ABSTRACT

Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.


Subject(s)
Brain Mapping , Brain/physiopathology , Neural Pathways/physiopathology , Schizophrenia/physiopathology , Adult , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male
19.
Psychopharmacology (Berl) ; 222(1): 129-40, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22311382

ABSTRACT

RATIONALE: Individuals with a family history of alcoholism (family history positive [FHP]) show higher alcoholism rates and are more impulsive than those without such a family history (family history negative [FHN]), possibly due to altered N-methyl-D-aspartate (NMDA) receptor function. OBJECTIVES: We investigated whether memantine, an NMDA receptor antagonist, differentially influences impulsivity measures and Go/No-Go behavior and fMRI activity in matched FHP and FHN individuals. METHODS: On separate days, participants received a single dose of 40 mg memantine or identical-appearing placebo. RESULTS: No group performance differences were observed on placebo for Go correct hit or No-Go false alarm reaction time on the Go/No-Go task. During fMRI, right cingulate activation differed for FHP vs. FHN subjects during No-Go correct rejects. Memantine had attenuated effects in FHP vs. FHN subjects: For No-Go false alarms, memantine was associated with limited reduction in subcortical, cingulate, and temporal regions in FHP subjects and reduced activity in fronto-striatal-parietal networks in FHN subjects. For No-Go correct rejects, memantine (relative to placebo) reduced activity in left cingulate and caudate in FHP but not FHN subjects. CONCLUSIONS: Lower sensitivity to the effects of memantine in FHP subjects is consistent with greater NMDA receptor function in this group.


Subject(s)
Alcoholism/epidemiology , Excitatory Amino Acid Antagonists/pharmacology , Family Health , Memantine/pharmacology , Adolescent , Adult , Caudate Nucleus/metabolism , Double-Blind Method , Excitatory Amino Acid Antagonists/administration & dosage , Female , Gyrus Cinguli/metabolism , Humans , Impulsive Behavior/epidemiology , Inhibition, Psychological , Magnetic Resonance Imaging/methods , Male , Memantine/administration & dosage , Young Adult
20.
Psychol Med ; 42(1): 29-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21733287

ABSTRACT

BACKGROUND: Patients with major depressive disorder (MDD) show deficits in processing of facial emotions that persist beyond recovery and cessation of treatment. Abnormalities in neural areas supporting attentional control and emotion processing in remitted depressed (rMDD) patients suggests that there may be enduring, trait-like abnormalities in key neural circuits at the interface of cognition and emotion, but this issue has not been studied systematically. METHOD: Nineteen euthymic, medication-free rMDD patients (mean age 33.6 years; mean duration of illness 34 months) and 20 age- and gender-matched healthy controls (HC; mean age 35.8 years) performed the Emotional Face N-Back (EFNBACK) task, a working memory task with emotional distracter stimuli. We used blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to measure neural activity in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC), orbitofrontal cortex (OFC), ventral striatum and amygdala, using a region of interest (ROI) approach in SPM2. RESULTS: rMDD patients exhibited significantly greater activity relative to HC in the left DLPFC [Brodmann area (BA) 9/46] in response to negative emotional distracters during high working memory load. By contrast, rMDD patients exhibited significantly lower activity in the right DLPFC and left VLPFC compared to HC in response to positive emotional distracters during high working memory load. These effects occurred during accurate task performance. CONCLUSIONS: Remitted depressed patients may continue to exhibit attentional biases toward negative emotional information, reflected by greater recruitment of prefrontal regions implicated in attentional control in the context of negative emotional information.


Subject(s)
Attention/physiology , Depressive Disorder, Major/physiopathology , Emotions/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiopathology , Adult , Analysis of Variance , Basal Ganglia/physiopathology , Brain Mapping , Case-Control Studies , Depressive Disorder, Major/psychology , Facial Expression , Female , Functional Laterality , Humans , Magnetic Resonance Imaging/methods , Male , Oxygen/blood , Photic Stimulation/methods , Reaction Time , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL