Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Drug Discov Today ; 26(3): 637-650, 2021 03.
Article in English | MEDLINE | ID: mdl-33132106

ABSTRACT

Current early and preclinical drug discovery are rooted in decades-old empirical principles describing structure-free energy and structure-function relationships under equilibrium conditions that frequently break down under in vivo conditions. Improved prediction of efficacy and toxicity depends on a paradigm shift to in vivo-relevant principles describing the true nonequilibrium/nonlinear dynamic (NLD) nature of cellular systems. Here, we outline a holistic, in vivo-relevant first principles theory ('Biodynamics'), in which cellular function/dysfunction, and pharmaco-/toxicodynamic effects are considered as emergent behaviors of multimolecular systems powered by covalent and noncovalent free energy sources. The reduction to practice of Biodynamics theory consists of in silico simulations performed at the atomistic and molecular systems levels, versus empirical models fit to in vitro data under the classical paradigm.


Subject(s)
Computer Simulation , Drug Design/methods , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Humans , Nonlinear Dynamics , Structure-Activity Relationship , Thermodynamics
2.
ACS Pharmacol Transl Sci ; 3(6): 1111-1143, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33330838

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is of major interest as an antiviral drug target. Structure-based virtual screening efforts, fueled by a growing list of apo and inhibitor-bound SARS-CoV/CoV-2 Mpro crystal structures, are underway in many laboratories. However, little is known about the dynamic enzyme mechanism, which is needed to inform both assay development and structure-based inhibitor design. Here, we apply biodynamics theory to characterize the structural dynamics of substrate-induced Mpro activation under nonequilibrium conditions. The catalytic cycle is governed by concerted dynamic structural rearrangements of domain 3 and the m-shaped loop (residues 132-147) on which Cys145 (comprising the thiolate nucleophile and half of the oxyanion hole) and Gly143 (comprising the second half of the oxyanion hole) reside. In particular, we observed the following: (1) Domain 3 undergoes dynamic rigid-body rotation about the domain 2-3 linker, alternately visiting two primary conformational states (denoted as M1 pro ↔ M2 pro); (2) The Gly143-containing crest of the m-shaped loop undergoes up and down translations caused by conformational changes within the rising stem of the loop (Lys137-Asn142) in response to domain 3 rotation and dimerization (denoted as M1/down pro ↔ 2·M2/up pro) (noting that the Cys145-containing crest is fixed in the up position). We propose that substrates associate to the M1/down pro state, which promotes the M2/down pro state, dimerization (denoted as 2·M2/up pro-substrate), and catalysis. Here, we explore the state transitions of Mpro under nonequilibrium conditions, the mechanisms by which they are powered, and the implications thereof for efficacious inhibition under in vivo conditions.

3.
PLoS One ; 15(11): e0234946, 2020.
Article in English | MEDLINE | ID: mdl-33147278

ABSTRACT

The human ether-a-go-go-related voltage-gated cardiac ion channel (commonly known as hERG) conducts the rapid outward repolarizing potassium current in cardiomyocytes (IKr). Inadvertent blockade of this channel by drug-like molecules represents a key challenge in pharmaceutical R&D due to frequent overlap between the structure-activity relationships of hERG and many primary targets. Building on our previous work, together with recent cryo-EM structures of hERG, we set about to better understand the energetic and structural basis of promiscuous blocker-hERG binding in the context of Biodynamics theory. We propose a two-step blocker binding process consisting of: The initial capture step: diffusion of a single fully solvated blocker copy into a large cavity lined by the intra-cellular cyclic nucleotide binding homology domain (CNBHD). Occupation of this cavity is a necessary but insufficient condition for ion current disruption.The IKr disruption step: translocation of the captured blocker along the channel axis, such that: The head group, consisting of a quasi-rod-shaped moiety, projects into the open pore, accompanied by partial de-solvation of the binding interface.One tail moiety packs along a kink between the S6 helix and proximal C-linker helix adjacent to the intra-cellular entrance of the pore, likewise accompanied by mutual de-solvation of the binding interface (noting that the association barrier is comprised largely of the total head + tail group de-solvation cost).Blockers containing a highly planar moiety that projects into a putative constriction zone within the closed channel become trapped upon closing, as do blockers terminating prior to this region.A single captured blocker copy may conceivably associate and dissociate to/from the pore many times before exiting the CNBHD cavity. Lastly, we highlight possible flaws in the current hERG safety index (SI), and propose an alternate in vivo-relevant strategy factoring in: Benefit/risk.The predicted arrhythmogenic fractional hERG occupancy (based on action potential (AP) simulations of the undiseased human ventricular cardiomyocyte).Alteration of the safety threshold due to underlying disease.Risk of exposure escalation toward the predicted arrhythmic limit due to patient-to-patient pharmacokinetic (PK) variability, drug-drug interactions, overdose, and use for off-label indications in which the hERG safety parameters may differ from their on-label counterparts.


Subject(s)
ERG1 Potassium Channel/chemistry , ERG1 Potassium Channel/metabolism , Potassium Channel Blockers/pharmacology , Arrhythmias, Cardiac , Binding Sites , Cryoelectron Microscopy , Humans , Models, Biological , Models, Molecular , Potassium Channel Blockers/chemistry , Protein Conformation , Protein Domains
4.
PLoS One ; 13(11): e0202376, 2018.
Article in English | MEDLINE | ID: mdl-30383749

ABSTRACT

Cellular function depends on heterogeneous dynamic intra-, inter-, and supramolecular structure-function relationships. However, the specific mechanisms by which cellular function is transduced from molecular systems, and by which cellular dysfunction arises from molecular dysfunction are poorly understood. We proposed previously that cellular function manifests as a molecular form of analog computing, in which specific time-dependent state transition fluxes within sets of molecular species ("molecular differential equations" (MDEs)) are sped and slowed in response to specific perturbations (inputs). In this work, we offer a theoretical treatment of the molecular mechanisms underlying cellular analog computing (which we refer to as "biodynamics"), focusing primarily on non-equilibrium (dynamic) intermolecular state transitions that serve as the principal means by which MDE systems are solved (the molecular equivalent of mathematical "integration"). Under these conditions, bound state occupancy is governed by kon and koff, together with the rates of binding partner buildup and decay. Achieving constant fractional occupancy over time depends on: 1) equivalence between kon and the rate of binding site buildup); 2) equivalence between koff and the rate of binding site decay; and 3) free ligand concentration relative to koff/kon (n · Kd, where n is the fold increase in binding partner concentration needed to achieve a given fractional occupancy). Failure to satisfy these conditions results in fractional occupancy well below that corresponding to n · Kd. The implications of biodynamics for cellular function/dysfunction and drug discovery are discussed.


Subject(s)
Drug Discovery , Proteins/metabolism , Algorithms , Binding Sites , Drug Discovery/methods , Humans , Kinetics , Ligands , Protein Binding , Proteins/chemistry , Thermodynamics
5.
Curr Top Med Chem ; 17(23): 2642-2662, 2017.
Article in English | MEDLINE | ID: mdl-28413952

ABSTRACT

Cellular drug targets exist within networked function-generating systems whose constituent molecular species undergo dynamic interdependent non-equilibrium state transitions in response to specific perturbations (i.e.. inputs). Cellular phenotypic behaviors are manifested through the integrated behaviors of such networks. However, in vitro data are frequently measured and/or interpreted with empirical equilibrium or steady state models (e.g. Hill, Michaelis-Menten, Briggs-Haldane) relevant to isolated target populations. We propose that cells act as analog computers, "solving" sets of coupled "molecular differential equations" (i.e. represented by populations of interacting species)via "integration" of the dynamic state probability distributions among those populations. Disconnects between biochemical and functional/phenotypic assays (cellular/in vivo) may arise with targetcontaining systems that operate far from equilibrium, and/or when coupled contributions (including target-cognate partner binding and drug pharmacokinetics) are neglected in the analysis of biochemical results. The transformation of drug discovery from a trial-and-error endeavor to one based on reliable design criteria depends on improved understanding of the dynamic mechanisms powering cellular function/dysfunction at the systems level. Here, we address the general mechanisms of molecular and cellular function and pharmacological modulation thereof. We outline a first principles theory on the mechanisms by which free energy is stored and transduced into biological function, and by which biological function is modulated by drug-target binding. We propose that cellular function depends on dynamic counter-balanced molecular systems necessitated by the exponential behavior of molecular state transitions under non-equilibrium conditions, including positive versus negative mass action kinetics and solute-induced perturbations to the hydrogen bonds of solvating water versus kT.


Subject(s)
Drug Discovery , Models, Molecular , Systems Biology , Quantum Theory
6.
J Am Chem Soc ; 139(1): 442-452, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27951634

ABSTRACT

Passive membrane permeation of small molecules is essential to achieve the required absorption, distribution, metabolism, and excretion (ADME) profiles of drug candidates, in particular intestinal absorption and transport across the blood-brain barrier. Computational investigations of this process typically involve either building QSAR models or performing free energy calculations of the permeation event. Although insightful, these methods rarely bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate constants determining each step in the permeation event allows derivation of structure-kinetic relationships of permeation. We use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane partitioning determines the rate of leaving the membrane.


Subject(s)
Madin Darby Canine Kidney Cells/chemistry , Models, Chemical , Molecular Dynamics Simulation , Small Molecule Libraries/chemistry , Animals , Caco-2 Cells , Cell Membrane Permeability , Dogs , Humans , Kinetics , Molecular Structure , Quantitative Structure-Activity Relationship
7.
Biochim Biophys Acta Biomembr ; 1859(2): 177-194, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27836643

ABSTRACT

The membrane dipole potential (Ψd) constitutes one of three electrical potentials generated by cell membranes. Ψd arises from the unfavorable parallel alignment of phospholipid and water dipoles, and varies in magnitude both longitudinally and laterally across the bilayer according to membrane composition and phospholipid packing density. In this work, we propose that dynamic counter-balancing between Ψd and the transmembrane potential (ΔΨm) governs the conformational state transitions of voltage-gated ion channels. Ψd consists of 1) static outer, and dynamic inner leaflet components (Ψd(extra) and Ψd(intra), respectively); and 2) a transmembrane component (ΔΨd(inner-outer)), ariing from differences in intra- and extracellular leaflet composition. Ψd(intra), which transitions between high and low energy states (Ψd(intra, high) and Ψd(intra, low)) as a function of channel conformation, is transduced by the pore domain. ΔΨd(inner-outer) is transduced by the voltage-sensing (VS) domain in summation with ΔΨm. Potentiation of voltage-gated ion channels is of interest for the treatment of cardiac, neuronal, and other disorders arising from inherited/acquired ion channel dysfunction. Potentiators are widely believed to alter the rates and voltage-dependencies of channel gating transitions by binding to pockets in the membrane-facing and other regions of ion channel targets. Here, we propose that potentiators alter Ψd(intra) and/or Ψd(extra), thereby increasing or decreasing the energy barriers governing channel gating transitions. We used quantum mechanical and molecular dynamics (MD) simulations to predict the overall Ψd-modulating effects of a series of published positive hERG potentiators partitioned into model DOPC bilayers. Our findings suggest a strong correlation between the magnitude of Ψd-lowering and positive hERG potentiation across the series.


Subject(s)
Cations/metabolism , Cell Membrane/physiology , Ion Channel Gating/physiology , Ion Channels/metabolism , Membrane Potentials/physiology , Binding Sites/physiology , Biophysical Phenomena/physiology , Humans , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Protein Binding/physiology , Transcriptional Regulator ERG/metabolism
8.
J Med Chem ; 59(12): 5780-9, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27239696

ABSTRACT

Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the ß2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of ß2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions.


Subject(s)
Cell Membrane/metabolism , Ligands , Receptors, Adrenergic, beta-2/metabolism , Binding Sites , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship
9.
Curr Top Med Chem ; 16(16): 1792-818, 2016.
Article in English | MEDLINE | ID: mdl-26975508

ABSTRACT

Blockade of the hERG potassium channel prolongs the ventricular action potential (AP) and QT interval, and triggers early after depolarizations (EADs) and torsade de pointes (TdP) arrhythmia. Opinions differ as to the causal relationship between hERG blockade and TdP, the relative weighting of other contributing factors, definitive metrics of preclinical proarrhythmicity, and the true safety margin in humans. Here, we have used in silico techniques to characterize the effects of channel gating and binding kinetics on hERG occupancy, and of blockade on the human ventricular AP. Gating effects differ for compounds that are sterically compatible with closed channels (becoming trapped in deactivated channels) versus those that are incompatible with the closed/closing state, and expelled during deactivation. Occupancies of trappable blockers build to equilibrium levels, whereas those of non-trappable blockers build and decay during each AP cycle. Occupancies of ~83% (non-trappable) versus ~63% (trappable) of open/inactive channels caused EADs in our AP simulations. Overall, we conclude that hERG occupancy at therapeutic exposure levels may be tolerated for nontrappable, but not trappable blockers capable of building to the proarrhythmic occupancy level. Furthermore, the widely used Redfern safety index may be biased toward trappable blockers, overestimating the exposure-IC50 separation in nontrappable cases.


Subject(s)
Action Potentials/drug effects , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ion Channel Gating/drug effects , Potassium Channel Blockers/adverse effects , Potassium Channel Blockers/pharmacology , Binding Sites/drug effects , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Kinetics , Potassium Channel Blockers/chemistry , Safety Management
10.
J Chem Theory Comput ; 11(11): 5090-102, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26574307

ABSTRACT

A statistical-mechanical framework for estimation of solvation entropies and enthalpies is proposed, which is based on the analysis of water as a mixture of correlated water oxygens and water hydrogens. Entropic contributions of increasing order are cast in terms of a Mutual Information Expansion that is evaluated to pairwise interactions. In turn, the enthalpy is computed directly from a distance-based hydrogen bonding energy algorithm. The resulting expressions are employed for grid-based analyses of Molecular Dynamics simulations. In this first assessment of the methodology, we obtained global estimates of the excess entropy and enthalpy of water that are in good agreement with experiment and examined the method's ability to enable detailed elucidation of solvation thermodynamic structures, which can provide valuable knowledge toward molecular design.


Subject(s)
Entropy , Hydrogen/chemistry , Oxygen/chemistry , Thermodynamics , Water , Molecular Dynamics Simulation , Solvents/chemistry , Water/chemistry
11.
J Cereb Blood Flow Metab ; 35(6): 1044-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25712497

ABSTRACT

Hepatocyte growth factor (HGF), efficacious in preclinical models of acute central nervous system injury, is burdened by administration of full-length proteins. A multiinstitutional consortium investigated the efficacy of BB3, a small molecule with HGF-like activity that crosses the blood-brain barrier in rodent focal ischemic stroke using Stroke Therapy Academic Industry Roundtable (STAIR) and Good Laboratory Practice guidelines. In rats, BB3, begun 6 hours after temporary middle cerebral artery occlusion (tMCAO) reperfusion, or permanent middle cerebral artery occlusion (pMCAO) onset, and continued for 14 days consistently improved long-term neurologic function independent of sex, age, or laboratory. BB3 had little effect on cerebral infarct size and no effect on blood pressure. BB3 increased HGF receptor c-Met phosphorylation and synaptophysin expression in penumbral tissue consistent with a neurorestorative mechanism from HGF-like activity. In mouse tMCAO, BB3 starting 10 minutes after reperfusion and continued for 14 days improved neurologic function that persisted for 8 weeks in some, but not all measures. Study in animals with comorbidities and those exposed to common stroke drugs are the next steps to complete preclinical assessment. These data, generated in independent, masked, and rigorously controlled settings, are the first to suggest that the HGF pathway can potentially be harnessed by BB3 for neurologic benefit after ischemic stroke.


Subject(s)
Brain/blood supply , Brain/drug effects , Hepatocyte Growth Factor/chemistry , Hepatocyte Growth Factor/therapeutic use , Infarction, Middle Cerebral Artery/drug therapy , Animals , Blood-Brain Barrier/metabolism , Brain/pathology , Brain/physiopathology , Female , Hepatocyte Growth Factor/pharmacokinetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Long-Evans , Rats, Wistar , Treatment Outcome
12.
J Chem Inf Model ; 54(12): 3344-61, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25405925

ABSTRACT

Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.


Subject(s)
Green Fluorescent Proteins/chemistry , Mannitol Dehydrogenases/chemistry , Molecular Dynamics Simulation , Movement , Protons , Solvents/chemistry , Catalytic Domain , Crystallography, X-Ray , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mannitol Dehydrogenases/genetics , Mannitol Dehydrogenases/metabolism , Mutation , Protein Structure, Secondary , Pseudomonas fluorescens/enzymology , Time Factors
13.
Proteins ; 82(11): 2998-3012, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25082756

ABSTRACT

The emergence of Gram-negative "superbugs" exhibiting resistance to known antibacterials poses a major public health concern. Low molecular weight Gram-negative antibacterials are believed to penetrate the outer bacterial membrane (OM) through porin channels. Therefore, intracellular exposure needed to drive antibacterial target occupancy should depend critically on the translocation rates through these proteins and avoidance of efflux pumps. We used electrophysiology to study the structure-translocation kinetics relationships of a set of carbapenem antibacterials through purified porin OmpC reconstituted in phospholipid bilayers. We also studied the relative susceptibility of OmpC+ and OmpC- E. coli to these compounds as an orthogonal test of translocation. Carbapenems exhibit good efficacy in OmpC-expressing E. coli cells compared with other known antibacterials. Ertapenem, which contains an additional acidic group compared to other analogs, exhibits the fastest entry into OmpC (k(on) ≈ 2 × 10(4) M(-1) s(-1)). Zwitterionic compounds with highly polar groups attached to the penem-2 ring, including panipenem, imipenem and doripenem exhibit faster k(on) (>10(4) M(-1) s(-1)), while meropenem and biapenem with fewer exposed polar groups exhibit slower k(on) (∼5 × 10(3) M(-1) s(-1)). Tebipenem pivoxil and razupenem exhibit ∼13-fold slower k(on) (∼1.5 × 10(3) M(-1) s(-1)) than ertapenem. Overall, our results suggest that (a) OmpC serves as an important route of entry of these antibacterials into E. coli cells; and (b) that the structure-kinetic relationships of carbapenem translocation are governed by H-bond acceptor/donor composition (in accordance with our previous findings that the enthalpic cost of transferring water from the constriction zone to bulk solvent increases in the presence of exposed nonpolar groups).


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Carbapenems/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Porins/metabolism , Bacterial Outer Membrane Proteins/genetics , Carbapenems/chemistry , Carbapenems/pharmacokinetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Kinetics , Lipid Bilayers , Microbial Sensitivity Tests , Phospholipids/metabolism , Structure-Activity Relationship
14.
Antioxid Redox Signal ; 20(15): 2437-64, 2014 May 20.
Article in English | MEDLINE | ID: mdl-23706004

ABSTRACT

SIGNIFICANCE: Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES: Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES: Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS: Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.


Subject(s)
Antioxidants/pharmacology , Antioxidants/therapeutic use , Central Nervous System Diseases/drug therapy , Metalloporphyrins/pharmacology , Metalloporphyrins/therapeutic use , Animals , Antioxidants/chemistry , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/metabolism , Humans , Metalloporphyrins/chemistry , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects
15.
Redox Biol ; 1: 599-607, 2013.
Article in English | MEDLINE | ID: mdl-24363995

ABSTRACT

Radiation proctitis, an inflammation and damage to the lower part of colon, is a common adverse event of the radiotherapy of tumors in the abdominal and pelvic region (colon, prostate, cervical). Several Mn(III) porphyrin-based superoxide dismutase mimics have been synthesized and successfully evaluated in preclinical models as radioprotectants. Here we report for the first time the remarkable rectal radioprotection of frequently explored Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+). A batch prepared in compliance with good manufacturing practice (GMP), which has good safety/toxicity profile, was used for this study. MnTE-2-PyP(5+) was given subcutaneously at 5 mg/kg, either 1 h before or 1 h after irradiation, with additional drug administered at weekly intervals thereafter. MnTE-2-PyP(5+) ameliorated both acute and chronic radiation proctitis in male Sprague-Dawley rats irradiated with 20-30 Gy protons delivered to 2.5 cm span of rectum using spread-out Bragg peak of a proton treatment beam. Focal irradiation of the rectum produced acute proctitis, which healed, followed by chronic rectal dilation and symptomatic proctitis. MnTE-2-PyP(5+) protected rectal mucosa from radiation-induced crypt loss measured 10 days post-irradiation. Significant effects were observed with both pre- and post-treatment regimens. However, only MnTE-2-PyP(5+) pre-treatment, but not post-treatment, prevented the development of rectal dilation, indicating that proper dosing regimen is critical for radioprotection. The pre-treatment also prevented or delayed the development of chronic proctitis depending on the radiation dose. Further work aimed at developing MnTE-2-PyP(5+) and similar drugs as adjunctive agents for radiotherapy of pelvic tumors is warranted. The present study substantiates the prospects of employing this and similar analogs in preserving normal tissue during cancer radiation as well as any other radiation exposure.


Subject(s)
Metalloporphyrins/administration & dosage , Proctitis/drug therapy , Radiation-Protective Agents/administration & dosage , Rectum/radiation effects , Animals , Biomimetic Materials , Dose-Response Relationship, Drug , Injections, Subcutaneous , Male , Metalloporphyrins/therapeutic use , Proctitis/pathology , Radiation-Protective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Rectum/pathology
16.
Proteins ; 81(9): 1509-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23468227

ABSTRACT

In our previous work, we proposed that desolvation and resolvation of the binding sites of proteins can serve as the slowest steps during ligand association and dissociation, respectively, and tested this hypothesis on two protein-ligand systems with known binding kinetics behavior. In the present work, we test this hypothesis on another kinetically-determined protein-ligand system-that of p38α and eight Type II BIRB 796 inhibitor analogs. The kon values among the inhibitor analogs are narrowly distributed (104 ≤ kon ≤ 105 M⁻¹ s⁻¹), suggesting a common rate-determining step, whereas the koff values are widely distributed (10⁻¹ ≤ koff ≤ 10⁻6 s⁻¹), suggesting a spectrum of rate-determining steps. We calculated the solvation properties of the DFG-out protein conformation using an explicit solvent molecular dynamics simulation and thermodynamic analysis method implemented in WaterMap to predict the enthalpic and entropic costs of water transfer to and from bulk solvent incurred upon association and dissociation of each inhibitor. The results suggest that the rate-determining step for association consists of the transfer of a common set of enthalpically favorable solvating water molecules from the binding site to bulk solvent. The rate-determining step for inhibitor dissociation consists of the transfer of water from bulk solvent to specific binding site positions that are unfavorably solvated in the apo protein, and evacuated during ligand association. Different sets of unfavorable solvation are evacuated by each ligand, and the observed dissociation barriers are qualitatively consistent with the calculated solvation free energies of those sets.


Subject(s)
Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/chemistry , Protein Kinase Inhibitors/chemistry , Water/chemistry , Binding Sites , Kinetics , Mitogen-Activated Protein Kinase 14/metabolism , Models, Chemical , Molecular Dynamics Simulation , Protein Kinase Inhibitors/metabolism , Thermodynamics
17.
Cancer Sci ; 104(1): 70-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23078246

ABSTRACT

Small ubiquitin-like modifier (SUMO1-3) constitutes a group of proteins that conjugate to lysine residues of target proteins thereby modifying their activity, stability, and subcellular localization. A large number of SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression. Furthermore, SUMO conjugation plays key roles in genome stability, quality control of newly synthesized proteins, proteasomal degradation of proteins, and DNA damage repair. Any marked increase in levels of SUMO-conjugated proteins is therefore expected to have a major impact on the fate of cells. We show here that SUMO conjugation is activated in human astrocytic brain tumors. Levels of both SUMO1- and SUMO2/3-conjugated proteins were markedly increased in tumor samples. The effect was least pronounced in low-grade astrocytoma (WHO Grade II) and most pronounced in glioblastoma multiforme (WHO Grade IV). We also found a marked rise in levels of Ubc9, the only SUMO conjugation enzyme identified so far. Blocking SUMO1-3 conjugation in glioblastoma cells by silencing their expression blocked DNA synthesis, cell growth, and clonogenic survival of cells. It also resulted in DNA-dependent protein kinase-induced phosphorylation of H2AX, indicative of DNA double-strand damage, and G(2) /M cell cycle arrest. Collectively, these findings highlight the pivotal role of SUMO conjugation in DNA damage repair processes and imply that the SUMO conjugation pathway could be a new target of therapeutic intervention aimed at increasing the sensitivity of glioblastomas to radiotherapy and chemotherapy.


Subject(s)
Astrocytoma/metabolism , Brain Neoplasms/metabolism , Glioblastoma/metabolism , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitins/metabolism , Astrocytoma/pathology , Brain Neoplasms/pathology , Cell Cycle Checkpoints , Cell Survival , DNA Repair , Glioblastoma/pathology , Histones/metabolism , Humans , MicroRNAs/genetics , Phosphorylation , RNA Interference , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Tumor Cells, Cultured , Ubiquitin-Conjugating Enzymes/biosynthesis , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitins/genetics
18.
Proteins ; 81(2): 291-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23011778

ABSTRACT

Poor permeability of the lipopolysaccharide-based outer membrane of Gram-negative bacteria is compensated by the existence of protein channels (porins) that selectively admit low molecular weight substrates, including many antibiotics. Improved understanding of the translocation mechanisms of porin substrates could help guide the design of antibiotics capable of achieving high intracellular exposure. Energy barriers to channel entry and exit govern antibiotic fluxes through porins. We have previously reported a hypothesis that the costs of transferring protein solvation to and from bulk medium underlie the barriers to protein-ligand association and dissociation, respectively, concomitant with the gain and loss of protein-ligand interactions during those processes. We have now applied this hypothesis to explain the published rates of entry (association) and exit (dissociation) of six antibiotics to/from reconstituted E. coli porin OmpC. WaterMap was used to estimate the total water transfer energies resulting from transient occupation by each antibiotic. Our results suggest that solvation within the porin cavity is highly energetically favorable, and the observed moderately fast entry rates of the antibiotics are consistent with replacement of protein-water H-bonds. The observed ultrafast exit kinetics is consistent with the lack of intrachannel solvation sites that convey unfavorable resolvation during antibiotic dissociation. These results are aligned with known general relationships between antibiotic efficacy and physicochemical properties, namely unusually low logP, reflecting an abundance of H-bond partners. We conclude that antibiotics figuratively "melt" their way through porin solvation at a rate determined by the cost of exchanging protein-solvent for protein-antibiotic H-bonds.


Subject(s)
Cephalosporins/pharmacokinetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Fluoroquinolones/pharmacokinetics , Porins/chemistry , Porins/metabolism , Amino Acid Sequence , Biological Transport , Cephalosporins/chemistry , Fluoroquinolones/chemistry , Kinetics , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Structure, Tertiary , Thermodynamics
19.
Anesthesiology ; 117(6): 1262-75, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143806

ABSTRACT

BACKGROUND: Xenon has been proven to be neuroprotective in experimental brain injury. The authors hypothesized that xenon would improve outcome from focal cerebral ischemia with a delayed treatment onset and prolonged recovery interval. METHODS: Rats were subjected to 70 min temporary focal ischemia. Ninety minutes later, rats were treated with 0, 15, 30, or 45% Xe for 20 h or 0 or 30% Xe for 8, 20, or 44 h. Outcome was measured after 7 days. In another experiment, after ischemia, rats were maintained at 37.5° or 36.0°C for 20 h with or without 30% Xe. Outcome was assessed 28 days later. Finally, mice were subjected to intracerebral hemorrhage with or without 30% Xe for 20 h. Brain water content, hematoma volume, rotarod function, and microglial activation were measured. RESULTS: Cerebral infarct sizes (mean±SD) for 0, 15, 30, and 45% Xe were 212±27, 176±55, 160±32, and 198±54 mm, respectively (P=0.023). Neurologic scores (median±interquartile range) followed a similar pattern (P=0.002). Infarct size did not vary with treatment duration, but neurologic score improved (P=0.002) at all xenon exposure durations (8, 20, and 44 h). Postischemic treatment with either 30% Xe or subtherapeutic hypothermia (36°C) had no effect on 28-day outcome. Combination of these interventions provided long-term benefit. Xenon improved intracerebral hemorrhage outcome measures. CONCLUSION: Xenon improved focal ischemic outcome at 7, but not 28 days postischemia. Xenon combined with subtherapeutic hypothermia produced sustained recovery benefit. Xenon improved intracerebral hemorrhage outcome. Xenon may have potential for clinical stroke therapy under carefully defined conditions.


Subject(s)
Cerebral Hemorrhage/therapy , Disease Models, Animal , Hypothermia, Induced/methods , Neuroprotective Agents/administration & dosage , Stroke/therapy , Xenon/administration & dosage , Animals , Cerebral Hemorrhage/pathology , Male , Mice , Mice, Inbred C57BL , Pilot Projects , Random Allocation , Rats , Rats, Wistar , Stroke/pathology
20.
Proteins ; 78(12): 2571-86, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20589640

ABSTRACT

LDL cholesterol (LDL-C) is cleared from plasma via cellular uptake and internalization processes that are largely mediated by the low-density lipoprotein cholesterol receptor (LDL-R). LDL-R is targeted for lysosomal degradation by association with proprotein convertase subtilisin-kexin type 9 (PCSK9). Gain of function mutations in PCSK9 can result in excessive loss of receptors and dyslipidemia. On the other hand, receptor-sparing phenomena, including loss-of-function mutations or inhibition of PCSK9, can lead to enhanced clearance of plasma lipids. We hypothesize that desolvation and resolvation processes, in many cases, constitute rate-determining steps for protein-ligand association and dissociation, respectively. To test this hypothesis, we analyzed and compared the predicted desolvation properties of wild-type versus gain-of-function mutant Asp374Tyr PCSK9 using WaterMap, a new in silico method for predicting the preferred locations and thermodynamic properties of water solvating proteins ("hydration sites"). We compared these results with binding kinetics data for PCSK9, full-length LDL-R ectodomain, and isolated EGF-A repeat. We propose that the fast k(on) and entropically driven thermodynamics observed for PCSK9-EGF-A binding stem from the functional replacement of water occupying stable PCSK9 hydration sites (i.e., exchange of PCSK9 H-bonds from water to polar EGF-A groups). We further propose that the relatively fast k(off) observed for EGF-A unbinding stems from the limited displacement of solvent occupying unstable hydration sites. Conversely, the slower k(off) observed for EGF-A and LDL-R unbinding from Asp374Tyr PCSK9 stems from the destabilizing effects of this mutation on PCSK9 hydration sites, with a concomitant increase in the persistence of the bound complex.


Subject(s)
Computer Simulation , Epidermal Growth Factor/chemistry , Protein Conformation , Serine Endopeptidases/chemistry , Binding Sites , Cell Line , Crystallography, X-Ray , Epidermal Growth Factor/genetics , Humans , Models, Molecular , Mutation , Proprotein Convertase 9 , Proprotein Convertases , Receptors, LDL/chemistry , Serine Endopeptidases/genetics , Solvents/chemistry , Structure-Activity Relationship , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...