Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 37(3): 109839, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34624208

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Subject(s)
COVID-19/genetics , COVID-19/immunology , MicroRNAs/genetics , SARS-CoV-2/genetics , Adult , Aged , Aged, 80 and over , Animals , Antiviral Agents/pharmacology , Biomarkers/metabolism , Cricetinae , Female , Ferrets , Gene Expression Regulation , Glycolysis , Healthy Volunteers , Humans , Hypoxia , Inflammation , Male , Mice , Middle Aged , Proteomics/methods , ROC Curve , Rats , COVID-19 Drug Treatment
2.
bioRxiv ; 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-33948587

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.

3.
PLoS One ; 12(9): e0183113, 2017.
Article in English | MEDLINE | ID: mdl-28863142

ABSTRACT

Mild traumatic brain injury (mTBI) is a complex, neurophysiological condition that can have detrimental outcomes. Yet, to date, no objective method of diagnosis exists. Physical damage to the blood-brain-barrier and normal waste clearance via the lymphatic system may enable the detection of biomarkers of mTBI in peripheral circulation. Here we evaluate the accuracy of whole transcriptome analysis of blood to predict the clinical diagnosis of post-concussion syndrome (PCS) in a military cohort. Sixty patients with clinically diagnosed chronic concussion and controls (no history of concussion) were recruited (retrospective study design). Male patients (46) were split into a training set comprised of 20 long-term concussed (> 6 months and symptomatic) and 12 controls (no documented history of concussion). Models were validated in a testing set (control = 9, concussed = 5). RNA_Seq libraries were prepared from whole blood samples for sequencing using a SOLiD5500XL sequencer and aligned to hg19 reference genome. Patterns of differential exon expression were used for diagnostic modeling using support vector machine classification, and then validated in a second patient cohort. The accuracy of RNA profiles to predict the clinical diagnosis of post-concussion syndrome patients from controls was 86% (sensitivity 80%; specificity 89%). In addition, RNA profiles reveal duration of concussion. This pilot study shows the potential utility of whole transcriptome analysis to establish the clinical diagnosis of chronic concussion syndrome.


Subject(s)
Post-Concussion Syndrome/blood , Post-Concussion Syndrome/diagnosis , RNA/blood , Adult , Brain Injuries/blood , Brain Injuries/diagnosis , DNA, Complementary/metabolism , Female , Gene Expression Profiling , Genomics , Humans , Male , Middle Aged , Military Medicine , Military Personnel , Pilot Projects , Retrospective Studies , Sensitivity and Specificity , Support Vector Machine , Transcriptome
4.
Ann Clin Transl Neurol ; 3(2): 70-81, 2016 02.
Article in English | MEDLINE | ID: mdl-26900583

ABSTRACT

OBJECTIVE: Molecular diagnostic medicine holds much promise to change point of care treatment. An area where additional diagnostic tools are needed is in acute stroke care, to assist in diagnosis and prognosis. Previous studies using microarray-based gene expression analysis of peripheral blood following stroke suggests this approach may be effective. Next-generation sequencing (NGS) approaches have expanded genomic analysis and are not limited to previously identified genes on a microarray chip. Here, we report on a pilot NGS study to identify gene expression and exon expression patterns for the prediction of stroke diagnosis and prognosis. METHODS: We recruited 28 stroke patients and 28 age- and sex-matched hypertensive controls. RNA was extracted from 3 mL blood samples, and RNA-Seq libraries were assembled and sequenced. RESULTS: Bioinformatical analysis of the aligned RNA data reveal exonic (30%), intronic (36%), and novel RNA components (not currently annotated: 33%). We focused our study on patients with confirmed middle cerebral artery occlusion ischemic stroke (n = 17). On the basis of our observation of differential splicing of gene transcripts, we used all exonic RNA expression rather than gene expression (combined exons) to build prediction models using support vector machine algorithms. Based on model building, these models have a high predicted accuracy rate >90% (spec. 88% sen. 92%). We further stratified outcome based on the improvement in NIHss scores at discharge; based on model building we observe a predicted 100% accuracy rate. INTERPRETATION: NGS-based exon expression analysis approaches have a high potential for patient diagnosis and outcome prediction, with clear utility to aid in clinical patient care.

5.
Article in English | MEDLINE | ID: mdl-24379906

ABSTRACT

Neuronal morphology is highly sensitive to ischemia, although some re-organization may promote neuroprotection. In this study we investigate the role of actin regulating proteins (ARP2, ARP3 and WAVE-1) and their role in rapid ischemic tolerance. Using an established in vitro model of rapid ischemic tolerance, we show that WAVE-1 protein levels are stabilized following brief tolerance inducing ischemia (preconditioning). The stabilization appears to be due to a reduction in the ubiquitination of WAVE-1. Levels of ARP2, ARP3 and N-WASP were not affected by ischemic preconditioning. Immunocytochemical studies show a relocalization of ARP2 and ARP3 proteins in neurons following preconditioning ischemia, as well as a re-organization of actin. Blocking the protein kinase CK2 using emodin blocks ischemic tolerance, and our data suggests CK2 binds to WAVE-1 in neurons. We observe an increase in binding of the ARP2 subunit with WAVE-1. The neuroprotection observed following preconditioning is inhibited when cells are transduced with an N-WASP CA domain that blocks the activation of ARP2/3. Together these data show that ischemia affects actin regulating enzymes, and that the ARP2/3 pathway plays a role in rapid ischemic tolerance induced neuroprotection.

6.
Article in English | MEDLINE | ID: mdl-21760970

ABSTRACT

Tumor necrosis factor-α (TNFα) is a pleiotropic cytokine that can regulate cell survival, inflammation or, under certain circumstances, trigger cell death. Previous work in rat seizure models and analysis of temporal lobe samples from epilepsy patients has suggested seizures activate TNF receptor 1 (TNFR1). Here we explored the activation and functional significance of TNFR1 signaling in the mouse hippocampus using in vitro and in vivo models of seizure-induced neuronal injury. Focal-onset status epilepticus in mice upregulated TNFR1 levels and led to formation of TNFR1-TNFR-associated death domain (TRADD) and TRADD-Fas-associated death domain (FADD) binding. Seizure-like injury modeled in vitro by removal of chronic excitatory blockade in mouse hippocampal neurons also activated this TNFR1 signaling pathway. Prior exposure of hippocampal neurons to a non-harmful seizure episode, via NMDA receptor blockade, 24 h prior to injurious seizures significantly reduced cell death and modeled epileptic tolerance in vitro. TNFR1 complex formation with TRADD and TRADD-FADD binding were reduced in tolerant cells. Finally, TNFR1 signaling and cell death were reduced by PKF-242-484, a dual matrix metaloproteinase/TNFα converting enzyme inhibitor. The present study shows that TNFR1 signaling is activated in mouse seizure models and may contribute to neuropathology in vitro and in vivo while suppression of this pathway may underlie neuroprotection in epileptic tolerance.

7.
J Biol Chem ; 286(22): 19331-9, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21478148

ABSTRACT

We have previously shown that the cell death-promoting protein Bcl-2-interacting mediator of cell death (Bim) is ubiquitinated and degraded following a neuroprotection-conferring episode of brief ischemia (preconditioning). Here, we identify the E3 ligase that ubiquitinates Bim in this model, using a proteomics approach. Using phosphorylated GST-Bim as bait, we precipitated and identified by mass spectrometry tripartite motif protein 2 (TRIM2), a RING (really interesting new gene) domain-containing protein. The reaction between TRIM2 and Bim was confirmed using co-immunoprecipitation followed by immunoblotting. We show that TRIM2 binds to Bim when it is phosphorylated by p42/p44 MAPK but does not interact with a nonphosphorylatable Bim mutant (3ABim). 12-O-tetradecanoylphorbol-13-acetate activation of p42/p44 MAPK drives Bim ubiquitination in mouse embryonic fibroblast cells and is associated with an increased interaction between TRIM2 and Bim. One hour following preconditioning ischemia, the binding of Bim to TRIM2 increased, consistent with the time window of enhanced Bim degradation. Blocking p42/p44 MAPK activation following preconditioning ischemia with U0126 or using the nonphosphorylatable 3ABim reduced the binding between Bim and TRIM2. Immunodepletion of TRIM2 from cell lysates prepared from preconditioned cells reduced Bim ubiquitination. Finally, suppression of TRIM2 expression, using lentivirus transduction of shRNAmir, stabilized Bim protein levels and blocked neuroprotection observed in rapid ischemic tolerance. Taken together, these data support a role for TRIM2 in mediating the p42/p44 MAPK-dependent ubiquitination of Bim in rapid ischemic tolerance.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Brain Ischemia/metabolism , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Ischemic Preconditioning , Membrane Proteins/metabolism , Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Animals , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Brain Ischemia/genetics , Carcinogens/pharmacology , Cells, Cultured , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Membrane Proteins/genetics , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Phosphorylation/drug effects , Protein Binding , Proteins/genetics , Proto-Oncogene Proteins/genetics , Rats , Tetradecanoylphorbol Acetate/pharmacology , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...