Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Commun Chem ; 7(1): 81, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600176

ABSTRACT

Human gamma-D crystallin (HGD) is a major constituent of the eye lens. Aggregation of HGD contributes to cataract formation, the leading cause of blindness worldwide. It is unique in its longevity, maintaining its folded and soluble state for 50-60 years. One outstanding question is the structural basis of this longevity despite oxidative aging and environmental stressors including ultraviolet radiation (UV). Here we present crystallographic structures evidencing a UV-induced crystallin redox switch mechanism. The room-temperature serial synchrotron crystallographic (SSX) structure of freshly prepared crystallin mutant (R36S) shows no post-translational modifications. After aging for nine months in the absence of light, a thiol-adduct (dithiothreitol) modifying surface cysteines is observed by low-dose SSX. This is shown to be UV-labile in an acutely light-exposed structure. This suggests a mechanism by which a major source of crystallin damage, UV, may also act as a rescuing factor in a finely balanced redox system.

2.
EMBO Rep ; 25(2): 853-875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182815

ABSTRACT

Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that couple the transport of Na+- and/or H+ across membranes to the hydrolysis of pyrophosphate. Their role in the virulence of protist pathogens like Plasmodium falciparum makes them an intriguing target for structural and functional studies. Here, we show the first structure of a K+-independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved structures of a K+-dependent M-PPase and demonstrate pumping-before-hydrolysis by electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops affect ion selectivity and K+-activation due to a complex interplay of residues that are involved in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases but also why they display half-of-the-sites reactivity. Based on this, we propose, for the first time, a unified model for ion-pumping, hydrolysis, and energy coupling in all M-PPases, including those that pump both Na+ and H+.


Subject(s)
Pyrophosphatases , Sodium , Pyrophosphatases/chemistry , Pyrophosphatases/metabolism , Membranes/metabolism , Catalysis , Sodium/chemistry , Sodium/metabolism
3.
J Mol Biol ; 436(5): 168439, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185322

ABSTRACT

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Subject(s)
Adenylyl Cyclases , Bacterial Proteins , Oscillatoria , Photoreceptors, Microbial , Adenosine Triphosphate/chemistry , Adenylyl Cyclases/chemistry , Adenylyl Cyclases/radiation effects , Bacterial Proteins/chemistry , Bacterial Proteins/radiation effects , Flavin-Adenine Dinucleotide/chemistry , Signal Transduction , Spectroscopy, Fourier Transform Infrared , Oscillatoria/enzymology , Catalytic Domain , Tryptophan/chemistry , Methionine/chemistry , Photoreceptors, Microbial/chemistry , Photoreceptors, Microbial/radiation effects , Enzyme Activation
4.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195625

ABSTRACT

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Subject(s)
COVID-19 , Cysteine , Humans , SARS-CoV-2 , Drug Design , Oxidation-Reduction
5.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 101-112, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38265876

ABSTRACT

Catalase is an antioxidant enzyme that breaks down hydrogen peroxide (H2O2) into molecular oxygen and water. In all monofunctional catalases the pathway that H2O2 takes to the catalytic centre is via the `main channel'. However, the structure of this channel differs in large-subunit and small-subunit catalases. In large-subunit catalases the channel is 15 Šlonger and consists of two distinct parts, including a hydrophobic lower region near the heme and a hydrophilic upper region where multiple H2O2 routes are possible. Conserved glutamic acid and threonine residues are located near the intersection of these two regions. Mutations of these two residues in the Scytalidium thermophilum catalase had no significant effect on catalase activity. However, the secondary phenol oxidase activity was markedly altered, with kcat and kcat/Km values that were significantly increased in the five variants E484A, E484I, T188D, T188I and T188F. These variants also showed a lower affinity for inhibitors of oxidase activity than the wild-type enzyme and a higher affinity for phenolic substrates. Oxidation of heme b to heme d did not occur in most of the studied variants. Structural changes in solvent-chain integrity and channel architecture were also observed. In summary, modification of the main-channel gate glutamic acid and threonine residues has a greater influence on the secondary activity of the catalase enzyme, and the oxidation of heme b to heme d is predominantly inhibited by their conversion to aliphatic and aromatic residues.


Subject(s)
Glutamic Acid , Hydrogen Peroxide , Catalase/chemistry , Hydrogen Peroxide/chemistry , Heme/chemistry , Threonine
6.
Acta Crystallogr D Struct Biol ; 79(Pt 8): 668-672, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37463110

ABSTRACT

Fixed-target crystallography has become a widely used approach for serial crystallography at both synchrotron and X-ray free-electron laser (XFEL) sources. A plethora of fixed targets have been developed at different facilities and by various manufacturers, with different characteristics and dimensions and with little or no emphasis on standardization. These many fixed targets have good reasons for their design, shapes, fabrication materials and the presence or absence of apertures and fiducials, reflecting the diversity of serial experiments. Given this, it would be a Sisyphean task to design and manufacture a new standard fixed target that would satisfy all possible experimental configurations. Therefore, a simple standardized descriptor to fully describe fixed targets is proposed rather than a standardized device. This descriptor is a dictionary that could be read by fixed-target beamline software and straightforwardly allow data collection from fixed targets new to that beamline. The descriptor would therefore allow a much easier exchange of fixed targets between sources and facilitate the uptake of new fixed targets, benefiting beamlines, users and manufacturers. This descriptor was first presented at, and was developed following, a meeting of representatives from multiple synchrotron and XFEL sources in Hamburg in January 2023.


Subject(s)
Software , Synchrotrons , Crystallography, X-Ray , Data Collection , Lasers
7.
Commun Biol ; 5(1): 805, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953531

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Allosteric Site , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2
8.
Phys Chem Chem Phys ; 24(34): 20336-20347, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35980136

ABSTRACT

Incoherent neutron spectroscopy, in combination with dynamic light scattering, was used to investigate the effect of ligand binding on the center-of-mass self-diffusion and internal diffusive dynamics of Escherichia coli aspartate α-decarboxylase (ADC). The X-ray crystal structure of ADC in complex with the D-serine inhibitor was also determined, and molecular dynamics simulations were used to further probe the structural rearrangements that occur as a result of ligand binding. These experiments reveal that D-serine forms hydrogen bonds with some of the active site residues, that higher order oligomers of the ADC tetramer exist on ns-ms time-scales, and also show that ligand binding both affects the ADC internal diffusive dynamics and appears to further increase the size of the higher order oligomers.


Subject(s)
Aspartic Acid , Carboxy-Lyases/metabolism , Serine , Diffusion , Escherichia coli , Ligands , Models, Molecular
9.
Sci Immunol ; 7(73): eabm3723, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857577

ABSTRACT

Antibodies protect from infection, underpin successful vaccines and elicit therapeutic responses in otherwise untreatable cancers and autoimmune conditions. The human IgG2 isotype displays a unique capacity to undergo disulfide shuffling in the hinge region, leading to modulation of its ability to drive target receptor signaling (agonism) in a variety of important immune receptors, through hitherto unexplained molecular mechanisms. To address the underlying process and reveal how hinge disulfide orientation affects agonistic activity, we generated a series of cysteine to serine exchange variants in the hinge region of the clinically relevant monoclonal antibody ChiLob7/4, directed against the key immune receptor CD40. We report how agonistic activity varies with disulfide pattern and is afforded by the presence of a disulfide crossover between F(ab) arms in the agonistic forms, independently of epitope, as observed in the determined crystallographic structures. This structural "switch" affects directly on antibody conformation and flexibility. Small-angle x-ray scattering and ensemble modeling demonstrated that the least flexible variants adopt the fewest conformations and evoke the highest levels of receptor agonism. This covalent change may be amenable for broad implementation to modulate receptor signaling in an epitope-independent manner in future therapeutics.


Subject(s)
Disulfides , Immunoglobulin G , Antibodies, Monoclonal , Disulfides/chemistry , Epitopes , Humans , Protein Conformation
10.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 14-29, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34981758

ABSTRACT

With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.


Subject(s)
Crystallography, X-Ray/instrumentation , Crystallography, X-Ray/methods , Synchrotrons , Animals , Data Analysis , Enzymes/chemistry , Humans
11.
Acta Crystallogr D Struct Biol ; 77(Pt 10): 1218-1232, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34605426

ABSTRACT

Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.


Subject(s)
Light , Photochemical Processes , Proteins/chemistry , X-Ray Diffraction/methods , Animals , Humans , Protein Conformation
12.
Biochim Biophys Acta Proteins Proteom ; 1869(8): 140662, 2021 08.
Article in English | MEDLINE | ID: mdl-33887466

ABSTRACT

Scytalidium catalase is a homotetramer including heme d in each subunit. Its primary function is the dismutation of H2O2 to water and oxygen, but it is also able to oxidase various small organic compounds including catechol and phenol. The crystal structure of Scytalidium catalase reveals the presence of three linked channels providing access to the exterior like other catalases reported so far. The function of these channels has been extensively studied, revealing the possible routes for substrate flow and product release. In this report, we have focussed on the semi-conserved residue Val228, located near to the vinyl groups of the heme at the opening of the lateral channel. Its replacement with Ala, Ser, Gly, Cys, Phe and Ile were tested. We observed a significant decrease in catalytic efficiency in all mutants with the exception of a remarkable increase in oxidase activity when Val228 was mutated to either Ala, Gly or Ser. The reduced catalytic efficiencies are characterized in terms of the restriction of hydrogen peroxide as electron acceptor in the active centre resulting from the opening of lateral channel inlet by introducing the smaller side chain residues. On the other hand, the increased oxidase activity is explained by allowing the suitable electron donor to approach more closely to the heme. The crystal structures of V228C and V228I were determined at 1.41 and 1.47 Å resolution, respectively. The lateral channels of the V228C and V228I presented a broadly identical chain of arranged waters to that observed for wild-type enzyme.


Subject(s)
Catalase/genetics , Heme/chemistry , Sordariales/enzymology , Sordariales/genetics , Ascomycota/enzymology , Ascomycota/genetics , Catalase/chemistry , Catalase/metabolism , Catalysis , Catalytic Domain , Heme/analogs & derivatives , Hydrogen Peroxide/chemistry , Models, Molecular , Sordariales/metabolism
13.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 194-204, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33559608

ABSTRACT

The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate α-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.


Subject(s)
Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Proteins/chemistry , Ammonium Sulfate/chemistry
14.
Curr Opin Struct Biol ; 65: 168-174, 2020 12.
Article in English | MEDLINE | ID: mdl-32846363

ABSTRACT

The current state-of-the-art experiments in time-resolved structural biology are undoubtedly the recent extremely impressive results that are emerging from XFEL-based experiments. However, there is a large range of macromolecular systems where the biological interest is predominantly in the slower dynamics (µs-s), that produce well diffracting microcrystals, and for which synchrotron-based experiments are extremely well suited. The combination of microfocus X-ray beams and the development of a range of sample delivery platforms has now made routine millisecond time-resolved experiments at microfocus macromolecular crystallography beamlines a real possibility and is driving development of dedicated endstations for time-resolved serial synchrotron crystallography.


Subject(s)
Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Molecular Biology/methods , Synchrotrons
15.
J Synchrotron Radiat ; 27(Pt 2): 360-370, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153274

ABSTRACT

Serial synchrotron crystallography (SSX) is an emerging technique for static and time-resolved protein structure determination. Using specifically patterned silicon chips for sample delivery, the `hit-and-return' (HARE) protocol allows for efficient time-resolved data collection. The specific pattern of the crystal wells in the HARE chip provides direct access to many discrete time points. HARE chips allow for optical excitation as well as on-chip mixing for reaction initiation, making a large number of protein systems amenable to time-resolved studies. Loading of protein microcrystals onto the HARE chip is streamlined by a novel vacuum loading platform that allows fine-tuning of suction strength while maintaining a humid environment to prevent crystal dehydration. To enable the widespread use of time-resolved serial synchrotron crystallography (TR-SSX), detailed technical descriptions of a set of accessories that facilitate TR-SSX workflows are provided.

16.
IUCrJ ; 7(Pt 2): 207-219, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148849

ABSTRACT

Serial crystallography has enabled the study of complex biological questions through the determination of biomolecular structures at room temperature using low X-ray doses. Furthermore, it has enabled the study of protein dynamics by the capture of atomically resolved and time-resolved molecular movies. However, the study of many biologically relevant targets is still severely hindered by high sample consumption and lengthy data-collection times. By combining serial synchrotron crystallography (SSX) with 3D printing, a new experimental platform has been created that tackles these challenges. An affordable 3D-printed, X-ray-compatible microfluidic device (3D-MiXD) is reported that allows data to be collected from protein microcrystals in a 3D flow with very high hit and indexing rates, while keeping the sample consumption low. The miniaturized 3D-MiXD can be rapidly installed into virtually any synchrotron beamline with only minimal adjustments. This efficient collection scheme in combination with its mixing geometry paves the way for recording molecular movies at synchrotrons by mixing-triggered millisecond time-resolved SSX.

17.
Structure ; 28(3): 348-354.e3, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31899087

ABSTRACT

Recent structures of full-length ATP-binding cassette (ABC) transporter MsbA in different states indicate large conformational changes during the reaction cycle that involve transient dimerization of its nucleotide-binding domains (NBDs). However, a detailed molecular understanding of the structural changes and associated kinetics of MsbA upon ATP binding and hydrolysis is still missing. Here, we employed time-resolved small-angle X-ray scattering, initiated by stopped-flow mixing, to investigate the kinetics and accompanying structural changes of NBD dimerization (upon ATP binding) and subsequent dissociation (upon ATP hydrolysis) in the context of isolated NBDs as well as full-length MsbA in lipid nanodiscs. Our data allowed us to structurally characterize the major states involved in the process and determine time constants for NBD dimerization and dissociation. In the full-length protein, these structural transitions occur on much faster time scales, indicating close-proximity effects and structural coupling of the transmembrane domains with the NBDs.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Adenosine Triphosphate/metabolism , Hydrolysis , Protein Multimerization , Scattering, Small Angle , X-Ray Diffraction
18.
Nat Methods ; 16(10): 979-982, 2019 10.
Article in English | MEDLINE | ID: mdl-31527838

ABSTRACT

We introduce a liquid application method for time-resolved analyses (LAMA), an in situ mixing approach for serial crystallography. Picoliter-sized droplets are shot onto chip-mounted protein crystals, achieving near-full ligand occupancy within theoretical diffusion times. We demonstrate proof-of-principle binding of GlcNac to lysozyme, and resolve glucose binding and subsequent ring opening in a time-resolved study of xylose isomerase.


Subject(s)
Crystallography/methods , Synchrotrons , Acetylglucosamine/chemistry , Aldose-Ketose Isomerases/chemistry , Glucose/chemistry , Muramidase/chemistry , Proof of Concept Study
20.
FEBS J ; 286(12): 2329-2340, 2019 06.
Article in English | MEDLINE | ID: mdl-30817081

ABSTRACT

Photoactivatable fluorescent proteins (PA-FPs) are a powerful non-invasive tool in high-resolution live-cell imaging. They can be converted from an inactive to an active form by light, enabling the spatial and temporal trafficking of proteins and cell dynamics. PA-FPs have been previously generated by mutating selected residues in the chromophore or in its close proximity. A new strategy to generate PA-FPs is the genetic incorporation of unnatural amino acids (UAAs) containing photocaged groups using unique suppressor tRNA/aminoacyl-tRNA synthetase pairs. We set out to develop a photoactivatable GFP variant suitable for time-resolved structural studies. Here, we report the crystal structure of superfolder GFP (sfGFP) containing the UAA ortho-nitrobenzyl-tyrosine (ONBY) at position 66 and its spectroscopic characterization. Surprisingly, the crystal structure (to 2.7 Å resolution) reveals a dimeric domain-swapped arrangement of sfGFP66ONBY with residues 1-142 of one molecule associating with residues 148-234 from another molecule. This unusual domain-swapped structure supports a previously postulated GFP folding pathway that proceeds via an equilibrium intermediate.


Subject(s)
Amino Acids/genetics , Green Fluorescent Proteins/chemistry , Protein Conformation , Protein Folding , Amino Acids/chemistry , Amino Acyl-tRNA Synthetases/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Green Fluorescent Proteins/genetics , Methanocaldococcus/genetics , Molecular Imaging/methods , Mutation/genetics , Phenylalanine/chemistry , RNA, Transfer/chemistry , RNA, Transfer/genetics , Tyrosine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...