Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(6)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376927

ABSTRACT

Radiotherapy induces a type I interferon-mediated (T1IFN-mediated) antitumoral immune response that we hypothesized could be potentiated by a first-in-class ataxia telangiectasia mutated (ATM) inhibitor, leading to enhanced innate immune signaling, T1IFN expression, and sensitization to immunotherapy in pancreatic cancer. We evaluated the effects of AZD1390 or a structurally related compound, AZD0156, on innate immune signaling and found that both inhibitors enhanced radiation-induced T1IFN expression via the POLIII/RIG-I/MAVS pathway. In immunocompetent syngeneic mouse models of pancreatic cancer, ATM inhibitor enhanced radiation-induced antitumoral immune responses and sensitized tumors to anti-PD-L1, producing immunogenic memory and durable tumor control. Therapeutic responses were associated with increased intratumoral CD8+ T cell frequency and effector function. Tumor control was dependent on CD8+ T cells, as therapeutic efficacy was blunted in CD8+ T cell-depleted mice. Adaptive immune responses to combination therapy provided systemic control of contralateral tumors outside of the radiation field. Taken together, we show that a clinical candidate ATM inhibitor enhances radiation-induced T1IFN, leading to both innate and subsequent adaptive antitumoral immune responses and sensitization of otherwise resistant pancreatic cancer to immunotherapy.


Subject(s)
Ataxia Telangiectasia , Interferon Type I , Pancreatic Neoplasms , Pyridines , Quinolones , Animals , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/pathology , Immunity
2.
Cancer J ; 29(5): 279-284, 2023.
Article in English | MEDLINE | ID: mdl-37796646

ABSTRACT

ABSTRACT: The liver is a common site of metastasis for many primary malignancies, but the quantitative impact on survival is unknown. We performed a systematic review and meta-analysis of 83 studies (604,853 patients) assessing the overall hazard associated with liver metastases by primary tumor type and treatment regimen. The pooled overall survival hazard ratio (HR) for all included studies was 1.77 (95% confidence interval [CI], 1.62-1.93). Patients with breast cancer primaries fared the worst (HR, 2.37; 95% CI, 1.64-3.44), as did patients treated with immunotherapies (HR, 1.86; 95% CI, 1.42-2.42). Liver metastases negatively impact survival, necessitating new approaches to disease management.


Subject(s)
Breast Neoplasms , Liver Neoplasms , Humans , Female , Prognosis , Breast Neoplasms/therapy , Proportional Hazards Models , Liver Neoplasms/secondary
3.
Article in English | MEDLINE | ID: mdl-37601739

ABSTRACT

The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.

4.
Front Immunol ; 13: 1041451, 2022.
Article in English | MEDLINE | ID: mdl-36479127

ABSTRACT

CRISPR screening is a powerful tool that links specific genetic alterations to corresponding phenotypes, thus allowing for high-throughput identification of novel gene functions. Pooled CRISPR screens have enabled discovery of innate and adaptive immune response regulators in the setting of viral infection and cancer. Emerging methods couple pooled CRISPR screens with parallel high-content readouts at the transcriptomic, epigenetic, proteomic, and optical levels. These approaches are illuminating cancer immune evasion mechanisms as well as nominating novel targets that augment T cell activation, increase T cell infiltration into tumors, and promote enhanced T cell cytotoxicity. This review details recent methodological advances in high-content CRISPR screens and highlights the impact this technology is having on tumor immunology.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Proteomics , Epigenomics
5.
Front Oncol ; 12: 1022542, 2022.
Article in English | MEDLINE | ID: mdl-36387071

ABSTRACT

Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body's response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.

6.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830482

ABSTRACT

Radiotherapy promotes tumor cell death and senescence through the induction of oxidative damage. Recent work has highlighted the importance of lipid peroxidation for radiotherapy efficacy. Excessive lipid peroxidation can promote ferroptosis, a regulated form of cell death. In this review, we address the evidence supporting a role of ferroptosis in response to radiotherapy and discuss the molecular regulators that underlie this interaction. Finally, we postulate on the clinical implications for the intersection of ferroptosis and radiotherapy.


Subject(s)
Lipid Metabolism/radiation effects , Lipid Peroxidation/radiation effects , Neoplasms/radiotherapy , Cell Death/radiation effects , Cellular Senescence/genetics , Cellular Senescence/radiation effects , Ferroptosis/genetics , Ferroptosis/radiation effects , Humans , Lipid Metabolism/genetics , Neoplasms/genetics , Neoplasms/pathology , Oxidative Stress/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...