ABSTRACT
As part of on-going efforts to control hookworm infection, the "human hookworm vaccine initiative" has recognised blood feeding as a feasible therapeutic target for inducing immunity against hookworm infection. To this end, molecular approaches have been used to identify candidate targets, such as Necator americanus (Na) haemoglobinase aspartic protease-1 (APR-1), with immunogenicity profiled in canine and hamster models. We sought to accelerate the immune analysis of these identified therapeutic targets by developing an appropriate mouse model. Here we demonstrate that Nippostrongylus brasiliensis (Nb), a phylogenetically distant strongylid nematode of rodents, begins blood feeding early in its development and that immunisation with Na-APR-1 can block its growth and completion of its life cycle. Furthermore, we identify a new haem detoxification pathway in Nb required for blood feeding that can be blocked by drugs of the quinolone family, reducing both infection burden and the associated anaemia in rodents. Collectively, our findings show that haem metabolism has potential as a checkpoint for interrupting hookworm development in early stages of the hookworm life cycle and that the Nippostrongylus brasiliensis rodent model is relevant for identifying novel therapeutic targets against human hookworm.
Subject(s)
Antibodies, Helminth/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Erythrocytes/drug effects , Hookworm Infections/prevention & control , Necator americanus/enzymology , Nippostrongylus/growth & development , Strongylida Infections/prevention & control , Ancylostomatoidea/drug effects , Ancylostomatoidea/growth & development , Animals , Antigens, Helminth/immunology , Aspartic Acid Endopeptidases/immunology , Erythrocytes/parasitology , Female , Hookworm Infections/parasitology , Life Cycle Stages , Male , Mice , Mice, Inbred C57BL , Nippostrongylus/drug effects , Strongylida Infections/parasitologyABSTRACT
Schistosomiasis is a neglected tropical disease that is responsible for almost 300,000 deaths annually. Mass drug administration (MDA) is used worldwide for the control of schistosomiasis, but chemotherapy fails to prevent reinfection with schistosomes, so MDA alone is not sufficient to eliminate the disease, and a prophylactic vaccine is required. Herein, we take advantage of recent advances in systems biology and longitudinal studies in schistosomiasis endemic areas in Brazil to pilot an immunomics approach to the discovery of schistosomiasis vaccine antigens. We selected mostly surface-derived proteins, produced them using an in vitro rapid translation system and then printed them to generate the first protein microarray for a multi-cellular pathogen. Using well-established Brazilian cohorts of putatively resistant (PR) and chronically infected (CI) individuals stratified by the intensity of their S. mansoni infection, we probed arrays for IgG subclass and IgE responses to these antigens to detect antibody signatures that were reflective of protective vs. non-protective immune responses. Moreover, probing for IgE responses allowed us to identify antigens that might induce potentially deleterious hypersensitivity responses if used as subunit vaccines in endemic populations. Using multi-dimensional cluster analysis we showed that PR individuals mounted a distinct and robust IgG1 response to a small set of newly discovered and well-characterized surface (tegument) antigens in contrast to CI individuals who mounted strong IgE and IgG4 responses to many antigens. Herein, we show the utility of a vaccinomics approach that profiles antibody responses of resistant individuals in a high-throughput multiplex approach for the identification of several potentially protective and safe schistosomiasis vaccine antigens.
Subject(s)
Antibodies, Helminth/blood , Antigens, Helminth/immunology , Disease Resistance/immunology , Schistosomiasis/immunology , Vaccines/immunology , Adolescent , Adult , Antibodies, Helminth/immunology , Brazil/epidemiology , Chronic Disease , Cluster Analysis , Endemic Diseases , Female , High-Throughput Screening Assays , Humans , Male , Middle Aged , Neglected Diseases/immunology , Protein Array Analysis , Schistosomiasis/blood , Schistosomiasis/epidemiology , Young AdultABSTRACT
The large extracellular loop of the Schistosoma mansoni tetraspanin, Sm-TSP-2, when fused to a thioredoxin partner and formulated with Freund's adjuvants, has been shown to be an efficacious vaccine against murine schistosomiasis. Moreover, Sm-TSP-2 is uniquely recognised by IgG(1) and IgG(3) from putatively resistant individuals resident in S. mansoni endemic areas in Brazil. In the present study, we expressed Sm-TSP-2 at high yield and in soluble form in E. coli without the need for a solubility enhancing fusion partner. We also expressed in E. coli a chimera called Sm-TSP-2/5B, which consisted of Sm-TSP-2 fused to the immunogenic 5B region of the hookworm aspartic protease and vaccine antigen, Na-APR-1. Sm-TSP-2 formulated with alum/CpG showed significant reductions in adult worm and liver egg burdens in two separate murine schistosomiasis challenge studies. Sm-TSP-2/5B afforded significantly greater protection than Sm-TSP-2 alone when both antigens were formulated with alum/CpG. The enhanced protection obtained with the chimeric fusion protein was associated with increased production of anti-Sm-TSP-2 antibodies and IL-4, IL-10 and IFN-γ from spleen cells of vaccinated animals. Sera from 666 individuals from Brazil who were infected with S. mansoni were screened for potentially deleterious IgE responses to Sm-TSP-2. Anti-Sm-TSP-2 IgE to this protein was not detected (also shown previously for Na-APR-1), suggesting that the chimeric antigen Sm-TSP-2/5B could be used to safely and effectively vaccinate people in areas where schistosomes and hookworms are endemic.