Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
J Econ Entomol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687636

ABSTRACT

Southern red mite, Oligonychus ilicis McGregor (Acari: Tetranychidae), is an important polyphagous spider mite pest that causes economic damage to many ornamentals, coffee, and fruit crops. Blueberry growers in the Southeastern United States, including Florida and Georgia, have experienced severe losses due to outbreaks of O. ilicis. Predatory mites are an important management tool used for controlling spider mites; however, predators have not been studied and successfully evaluated in blueberry systems. Amblyseius swirskii Athias-Henriot, Phytoseiulus persimilis Athias-Henriot, and Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) are among the most economically important arthropod agents used in augmentative biological control worldwide. To evaluate the potential of these 3 commercially available predatory mites for use in blueberry plantings, we conducted experiments under controlled laboratory conditions and in the greenhouse. In preliminary laboratory experiments, P. persimilis and N. californicus significantly reduced the number of O. ilicis motile stages below those found in the untreated control, indicating the potential for these 2 predatory mite species to suppress O. ilicis populations. Amblyseius swirskii did not perform well controlling O. ilicis motiles in the laboratory. Under greenhouse conditions, N. californicus and P. persimilis significantly reduced the number of eggs after 7 days of release and the number of motile stages after 14 days of release. This is the first report of using phytoseiid mites to suppress O. ilicis in blueberry systems in the United States. Further studies on predator behavior, feeding preferences, and acaricide compatibility with predators are required to investigate the possibility of using P. persimilis, and N. californicus as biological control agents of O. ilicis in blueberry systems.

2.
Neotrop Entomol ; 53(2): 304-313, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38091236

ABSTRACT

Research efforts have been made to develop novel tactics, such as those targeting behavioral control, for management of the Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae), vector of the causal agent of citrus Huanglongbing. Here, we investigated whether association of "Ponkan" mandarin (Citrus reticulata) with volatiles from non-host crops: avocado, passion fruit or coffee, alters host location by the Asian citrus psyllid; and whether they can be temporary hosts for the Asian citrus psyllid. In wind tunnel assays, we found that the association of mandarin seedling with avocado plant volatiles reduced in 30% the number of psyllids sitting on host plants compared to the mandarin alone. In contrast, passion fruit plant volatiles facilitated host location by psyllids, which found mandarin seedlings faster than when exposed to mandarin alone. The association with coffee volatiles did not alter the attractiveness of mandarin to the Asian citrus psyllid. Survival and half-lethal time (LT50) of D. citri fed on non-host plants were longer than those insects with water only, but shorter than those fed on mandarin. Among the non-host plants, D. citri performed better in coffee, followed by avocado and passion fruit plants. Our results indicate that the association of mandarin with avocado plant can be beneficial for Asian citrus psyllid management.


Subject(s)
Citrus , Hemiptera , Animals , Coffee , Crops, Agricultural
3.
Naturwissenschaften ; 110(1): 3, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36700962

ABSTRACT

Cyclocephaline beetles are flower visitors attracted primarily by major floral volatiles. Addressing the identity of these volatile compounds is pivotal for understanding the evolution of plant-beetle interactions. We report the identification and field testing of the attractant volatiles from trumpet flowers, Brugmansia suaveolens (Willd.) Sweet (Solanaceae), for the beetle Cyclocephala paraguayensis Arrow (Melolonthidae: Dynastinae). Analysis of headspace floral volatiles revealed 19 compounds, from which eucalyptol (57%), methyl benzoate (16%), and ß-myrcene (6%) were present in the largest amounts, whereas E-nerolidol in much lesser amounts (1.8%). During a first-field assay, traps baited with Mebe alone or blended with the other two major compounds attracted more beetles than myrcene and eucalyptol alone, which did not differ from the negative controls. In a second assay, Mebe and nerolidol attracted more beetles as a blend than individually. Nerolidol was more attractive than Mebe, and all treatments attracted more beetles than negative controls. The number of attracted beetles in the Mebe-nerolidol blend was greater than the combined sum of beetles attracted to these compounds alone, suggesting a synergistic interaction. The attraction of C. paraguayensis by trumpet-flower volatiles supports the beetle's extended preference for sphingophilous plants, especially when cantharophilous (beetle-pollinated) flowers are lacking. This phenomenon, thus, might have contributed to the widespread occurrence of this beetle throughout the Brazilian biomes.


Subject(s)
Coleoptera , Solanaceae , Animals , Eucalyptol , Flowers , Pheromones
4.
Rev. bras. entomol ; 66(spe): e20220086, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1423207

ABSTRACT

ABSTRACT The predator Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) is a polyphagous species that has, among its wide range of acceptable prey, the aphid Macrosiphum rosae (Linnaeus, 1758) (Hemiptera: Aphididae), an important pest of rose plants. We assessed the consumption of nymphs and adults of M. rosae by C. externa larvae, the predatory efficiency, and larval survival under different predator:prey ratios, densities of aphids, and ages of aphids. The bioassays were performed at 25 ± 1°C and 70 ± 10% RH under a 12-hour photoperiod, with aphids taken from roses of the cultivar Avalanche. Consumption was assessed by making young aphids (2nd and 3rd instars) and more developed aphids (4th instar and adult) available throughout the larval stage of the predator. The predatory efficiency and survival were studied for second-instar larvae offered M. rosae nymphs at densities of 20, 40, 80, 120, and 160 using predator:prey ratios of 1:5, 1:10, and 1:20. The assessments were performed 24, 48, and 72 hours after putting the species together. All of the C. externa instars consumed younger than older aphids. Larvae in the third instar consumed 80% of the young aphids and 77% of the older aphids. The higher the predator:prey ratio and larval density, the higher the predatory efficiency and the lower the larval survival. The ratios 1:5 and 1:10 led to the elimination of younger and older aphid populations 72 hours into the interaction between species.

SELECTION OF CITATIONS
SEARCH DETAIL
...