Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 296: 154225, 2024 May.
Article in English | MEDLINE | ID: mdl-38522214

ABSTRACT

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Subject(s)
Arabidopsis , Diazonium Compounds , Isoleucine/analogs & derivatives , Pyridines , Arabidopsis/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Isoleucine/metabolism , Proton-Translocating ATPases/metabolism , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279229

ABSTRACT

Salinity is one of the most dangerous types of stress in agriculture. Acting on the root, salinity causes changes in physiological processes in the shoot, especially photosynthesis, which is crucial for plant productivity. In our study, we used potato plants, the most important crop, to investigate the role of salt-induced signals in changes in photosynthesis activity. We found a salt-induced polyphasic decrease in photosynthesis activity, and the earliest phase started several minutes after salt addition. We found that salt addition triggered rapid hydraulic and calcium waves from root to shoot, which occurred earlier than the first phase of the photosynthesis response. The inhibition of calcium signals by lanthanum decreased with the formation of rapid changes in photosynthesis. In addition to this, a comparison of the characteristic times of signal propagation and the formation of a response revealed the role of calcium waves in the modulation of rapid changes in photosynthesis. Calcium waves are activated by the ionic component of salinity. The salt-induced decrease in transpiration corresponds in time to the second phase of the photosynthetic response, and it can be the cause of this change. The accumulation of sodium in the leaves occurs a few hours after salt addition, and it can be the cause of the long-term suppression of photosynthesis. Thus, salinity modulates photosynthetic activity in plants in different ways: both through the activation of rapid distant signals and by reducing the water input and sodium accumulation.


Subject(s)
Photosynthesis , Sodium Chloride , Solanum tuberosum , Plant Leaves , Plant Roots , Salinity , Sodium , Sodium Chloride/toxicity
3.
Plants (Basel) ; 12(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36771527

ABSTRACT

Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants. A 16 h (light):8 h (dark) illumination regime was used as the control. In this work, we investigated the effect of photoperiod on total biomass and dry weight production in lettuce plants as well as on photosynthesis, respiration rate and chlorophyll content. A lighting regime 16:8 h (light:dark) was used as control. A shorter photoperiod (8 h) decreased total biomass and dry weight in lettuce, and this effect was related to the suppression of the linear electron flow caused by the decreasing content of chlorophylls and, therefore, light absorption. A longer photoperiod (24 h) increased the total biomass and dry weight, nevertheless an increase in photosynthetic processes, light absorption by leaves and chlorophyll content was not recorded, nor were differences in respiration rate, thus indicating that changes in photosynthesis and respiration are not necessary conditions for stimulating plant production. A simple model to predict plant production was also developed to address the question of whether increasing the duration of illumination stimulates plant production without inducing changes in photosynthesis and respiration. Our results indicate that increasing the duration of illumination can stimulate dry weight accumulation and that this effect can also be induced using the equal total light integrals for day (i.e., this stimulation can be also caused by increasing the light period while decreasing light intensity). Increasing the duration of illumination is therefore an effective approach to stimulating lettuce production under artificial lighting.

4.
Biology (Basel) ; 11(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35053058

ABSTRACT

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the "red" variant, and blue light at an increased intensity, the "blue" variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m-2s-1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35-130%) and cyclic electron flow around photosystem I (18-26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13-26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.

5.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613934

ABSTRACT

Salinity is one of the most common factors limiting the productivity of crops. The damaging effect of salt stress on many vital plant processes is mediated, on the one hand, by the osmotic stress caused by large concentrations of Na+ and Cl- outside the root and, on the other hand, by the toxic effect of these ions loaded in the cell. In our work, the influence of salinity on the changes in photosynthesis, transpiration, water content and cytosolic pH in the leaves of two important crops of the Solanaceae family-tobacco and potato-was investigated. Salinity caused a decrease in photosynthesis activity, which manifested as a decrease in the quantum yield of photosystem II and an increase in non-photochemical quenching. Along with photosynthesis limitation, there was a slight reduction in the relative water content in the leaves and a decrease in transpiration, determined by the crop water stress index. Furthermore, a decrease in cytosolic pH was detected in tobacco and potato plants transformed by the gene of pH-sensitive protein Pt-GFP. The potential mechanisms of the salinity influence on the activity of photosynthesis were analyzed with the comparison of the parameters' dynamics, as well as the salt content in the leaves.


Subject(s)
Nicotiana , Solanum tuberosum , Nicotiana/metabolism , Solanum tuberosum/metabolism , Photosynthesis , Plant Leaves/metabolism , Sodium/metabolism , Salinity
6.
Funct Plant Biol ; 49(2): 155-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34813421

ABSTRACT

Agricultural technologies aimed at increasing yields require the development of highly productive and stress-tolerant cultivars. Phenotyping can significantly accelerate breeding; however, no reliable markers have been identified to select the most promising cultivars at an early stage. In this work, we determined the light-induced dynamic of chlorophyll fluorescence (ChlF) parameters in young seedlings of 10 wheat (Triticum aestivum L.) cultivars and evaluated potency of these parameters as predictors of biomass accumulation and stress tolerance. Dry matter accumulation positively correlated with the effective quantum efficiency of photosystem II (Φ PSIIef ) and negatively correlated with the half-time of Φ PSIIef reaching (t 1/2 (Φ PSIIef )). There was a highly significant correlation between t 1/2 (Φ PSIIef ) and dry matter accumulation with increasing prediction period. Short-term heating and drought caused an inhibition of biomass accumulation and photosynthetic activity depending on the stressor intensity. The positive correlation between the Φ PSII dark level (Φ PSIId ) in young seedlings and tolerance to a rapidly increasing short-term stressor (heating) was shown. In the case of a long-term stressor (drought), we revealed a strong negative relationship between tolerance and the level of non-photochemical fluorescence quenching (NPQ). In general, the results show the potency of the ChlF parameters of young seedlings as predictors of biomass accumulation and stress tolerance.


Subject(s)
Droughts , Triticum , Biomass , Chlorophyll/pharmacology , Fluorescence , Hot Temperature , Plant Breeding
SELECTION OF CITATIONS
SEARCH DETAIL
...