ABSTRACT
OBJECTIVE: To explore possible changes in the community attributes of haematophagous insects as a function of forest disturbance. We compare the patterns of diversity and abundance, plus the behavioural responses of three epidemiologically distinct vector assemblages across sites depicting various levels of forest cover. METHODS: Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forested habitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey to gather blood-seeking females. RESULTS: We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86 species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites, confirming that disturbance has a negative impact on species richness. Species of Phlebotominae and Culicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tend to decrease in abundance along with rising levels of disturbance. In contrast, a significant portion of mosquito species, including primary and secondary disease vectors, was classified as colonists (i.e. disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats. At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the vertical niche by being active at the forest canopy or in the understorey; yet this pattern was less clear in disturbed habitats. Most mosquito species were not vertically stratified in their habitat preference. CONCLUSION: We posit that entomological risk and related pathogen exposure to humans is higher in pristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forest disturbance poses a higher entomological risk for mosquito-borne infections. This suggests that the Dilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yet unrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community level entomological surveillance is, therefore, the key for predicting potential disease spill over in scenarios of pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest quality should also be considered when assessing arthropod-borne disease transmission risk.
OBJECTIF: Explorer les changements possibles dans les attributs communautaires des insectes hématophages en fonction de la perturbation des forêts. Nous comparons les modèles de diversité et d'abondance, ainsi que les réponses comportementales de trois assemblages de vecteurs épidémiologiquement distincts sur des sites illustrant divers niveaux de couverture forestière. MÉTHODES: Au cours d'une période de trois ans, nous avons échantillonné des moustiques, des phlébotomes et des moucherons piqueurs dans les habitats forestiers du centre de Panama. Nous avons placé des pièges à lumière CDC dans la canopée de la forêt et dans le sous-étage pour recueillir les femelles en quête de sang. RÉSULTATS: Nous avons collecté un total de 168.405 diptères hématophages adultes, dont 26 genres et 86 espèces. Les environnements de forêt intacts étaient toujours plus diversifiés du point de vue taxonomique que les sites forestiers perturbés, confirmant que les perturbations avaient un impact négatif sur la richesse en espèces. Les espèces de phlébotome et Culicoïdes étaient principalement classés comme climax (spécialiste de la forêt) ou généralistes de perturbation, qui ont tendance à diminuer en abondance parallèlement aux niveaux croissants de perturbation. En revanche, une partie importante des espèces de moustiques, y compris les vecteurs primaires et secondaires de maladies, a été classée dans la catégorie des colons (c'est-à-dire spécialistes des zones perturbées), qui ont tendance à se multiplier vers des habitats forestiers plus perturbés. Dans la forêt vierge, les espèces de phlébotomes et Culicoïdes les plus répandues cloisonnaient la niche verticale en étant actives dans la canopée de la forêt ou dans le sous-étage; pourtant, cette tendance était moins nette dans les habitats perturbés. La plupart des espèces de moustiques n'étaient pas stratifiées verticalement dans leur préférence d'habitat. CONCLUSION: Nous estimons que le risque entomologique et l'exposition associée des agents pathogènes à l'homme est plus élevé dans les scénarios de forêt vierge pour les maladies transmises par les phlébotomes et Culicoïdes, alors que la perturbation des forêts pose un risque entomologique plus élevé pour les infections transmises par les moustiques. Cela suggère que l'hypothèse de l'effet de dilution ne s'applique pas dans les forêts tropicales humides où se reproduisent très abondamment les insectes vecteurs, mais non reconnus, et où des maladies zoonotiques négligées surviennent. Une surveillance entomologique approfondie au niveau de la communauté est donc la clé pour prédire le potentiel de propagation des maladies dans des scénarios de forêt vierge mélangée à des habitats anthropiques. Nous suggérons que les changements dans la qualité des forêts soient également pris en compte lors de l'évaluation du risque de propagation de maladies transmises par les arthropodes.
Subject(s)
Ceratopogonidae/physiology , Culicidae/physiology , Insect Vectors/physiology , Psychodidae/physiology , Rainforest , Animals , Mosquito Vectors/physiology , Panama , Population DensityABSTRACT
The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing different levels of disturbance. Species were identified taxonomically and classified into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olff-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments.
Subject(s)
Biodiversity , Culicidae , Rainforest , Tropical Climate , Animals , Communicable Diseases, Emerging/etiology , Communicable Diseases, Emerging/transmission , Ecosystem , Humans , Mosquito Vectors , Panama , Population DynamicsABSTRACT
Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family:Bunyaviridae; genus:Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis,Coquillettidia nigricans, and Mansonia titillans.
Subject(s)
Arboviruses/physiology , Ecosystem , Forests , Orthobunyavirus/physiology , Animals , Arboviruses/genetics , Arboviruses/isolation & purification , Base Sequence , Culicidae/virology , Genome, Viral/genetics , Insect Vectors/virology , Molecular Sequence Data , Orthobunyavirus/genetics , Orthobunyavirus/isolation & purification , Panama , Phylogeny , Population Surveillance , Sequence Analysis, DNAABSTRACT
The first record of Aedes albopictus in northern Belize was made in Orange Walk Town, Orange Walk District, on November 3, 2011. Aedes spp. larvae were collected during a routine Ministry of Health mosquito survey and reared to adults. Upon emergence, a mixed population of Aedes aegypti (35) and Ae. albopictus (11) was observed (aegypti:albopictus = 3:1). Subsequent larval and adult surveys in Orange Walk and Corozal District, also in northern Belize, have confirmed the presence of Ae. albopictus, thereby indicating the range expansion and establishment of this nuisance biter and potential disease vector in Belize.
Subject(s)
Aedes , Animals , Belize , Humans , Insect VectorsABSTRACT
Free-ranging ticks are widely known to be restricted to the ground level of vegetation. Here, we document the capture of the tick species Amblyomma tapirellum in light traps placed in the forest canopy of Barro Colorado Island, central Panama. A total of forty eight adults and three nymphs were removed from carbon dioxide-octenol baited CDC light traps suspended 20 meters above the ground during surveys for forest canopy mosquitoes. To our knowledge, this represents the first report of questing ticks from the canopy of tropical forests. Our finding suggests a novel ecological relationship between A. tapirellum and arboreal mammals, perhaps monkeys that come to the ground to drink or to feed on fallen fruits.
ABSTRACT
Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase (COI) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n=179) is presented for the first time in 60 years.
Subject(s)
Biodiversity , Culicidae/classification , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Ecology/classification , Electron Transport Complex IV/genetics , Animals , Ecuador , Oviposition , Polymerase Chain Reaction , RainforestABSTRACT
Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI ) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179) is presented for the first time in 60 years.
Subject(s)
Animals , Biodiversity , Culicidae/classification , Culicidae/genetics , DNA Barcoding, Taxonomic/methods , Ecology/classification , Electron Transport Complex IV/genetics , Ecuador , Oviposition , Polymerase Chain Reaction , RainforestABSTRACT
As part of a field ecology study of arbovirus and malaria activity in the Amazon Basin, Loreto Department, Peru, we collected mosquitoes landing on humans at a forest site and inside and outside of residences and military barracks at periurban, rural, and village sites. We collected 11 Anopheles spp. from these four sites. An. darlingi, the principal malaria vector in the region, accounted for 98.7% of all Anopheles spp. collected at Puerto Almendra. Peaks in landing activity occurred during the December and April collection periods. However, the percent of sporozoite-positive Anopheles spp. was highest 1-2 months later, when landing activity decreased to approximately 10% of the peak activity periods. At all sites, peak landing activity occurred about 2 hours after sunset. These data provide a better understanding of the taxonomy, population density, and seasonal and habitat distribution of potential malaria vectors within the Amazon Basin region.
Subject(s)
Anopheles/classification , Insect Vectors/classification , Malaria/epidemiology , Seasons , Animals , Anopheles/pathogenicity , Cities , Ecosystem , Housing , Humans , Insect Vectors/pathogenicity , Malaria/transmission , Peru/epidemiology , Population Density , Sporozoites , TreesABSTRACT
We report the first record of Culex (Anoedioporpa) restrictor collected from a tree hole in the Cauca Valley, Colombia, in 2006.
Subject(s)
Culex/classification , Animals , Colombia , Culex/anatomy & histology , Culex/physiology , Ecosystem , Female , Larva , Male , PupaABSTRACT
This study was conducted as part of a field-ecology study of arboviral and malarial activity in the Amazon Basin, Loreto Department, Peru, to determine the relative abundance, species diversity, and seasonal and vertical distributions of potential mosquito vectors. Mosquitoes were captured either by volunteers using mouth aspirators while mosquitoes attempted to land on the collectors or in dry ice-baited ABC light traps. Anopheles darlingi, the principal malaria vector in the region, was the most commonly captured anopheline mosquito in Puerto Almendra village (99%) while landing on humans, with a mean of 37.1 mosquitoes captured per 24-h period, representing nearly one half of all mosquitoes collected. An. darlingi human landing activity began shortly after sunset, peaked at 2000-2100 hours, and declined gradually until sunrise. This species readily entered houses, because 51% of the An. darlingi captured by paired collectors, stationed inside and outside houses, were captured indoors. Human landing collections provided a more accurate estimate of human attraction of An. darlingi, capturing 30 times as many as co-located dry ice-baited ABC light traps. In contrast, eight times as many Culex (Melanoconion) species, including known arbovirus vectors, were captured in light traps as by co-located human collectors. Despite being located within 300 m of the village collection site, only a few Anopheles species were captured at the forest collection site, including only 0.1 An darlingi/ 24 h, thus indicating that An. darlingi activity was directly associated with the rural village. These data provide a better understanding of the taxonomy, population density, and seasonal distribution of potential mosquito vectors of disease within the Amazon Basin region and allow for the development of appropriate vector and disease prevention strategies that target vector populations.
Subject(s)
Anopheles , Appetitive Behavior , Insect Vectors , Animals , Housing , Humans , Peru , Population Density , SeasonsABSTRACT
We report the first collection of Anopheles pictipennis from northern Chile, particularly sectors of Totoral, Perales, Puerto Viejo, and Salinas in the Atacama region. Adults were captured using human bait, while larvae and pupae were collected from various habitats including ponds, puddles left by overflowing river water, edges along river banks, wells, irrigation ditches, and permanent and semipermanent ground water. Associated species were Culex (Culex) quinquefasciatus and Ochlerotatus albifasciatus. The internal transcribed spacer 2 of the ribosomal DNA of An. pictipennis was sequenced.
Subject(s)
Anopheles , Animals , Anopheles/classification , Anopheles/genetics , Chile , DNA, Ribosomal Spacer , Female , Humans , MaleABSTRACT
This study was conducted as part of a field ecology study of arboviral activity in the Amazon Basin, Peru, to determine the taxonomy, frequency, seasonal, and vertical distributions of potential mosquito vectors. In addition, the relative efficiency of human-landing collections and dry ice-baited Centers for Disease Control (CDC)-type light traps was determined for collecting mosquitoes. A total of 70 species of mosquitoes from 14 genera were collected from June 1996 through December 1997 at a forested site near Puerto Almendras, approximately 20 km west-southwest of Iquitos, Peru. Three species [Psorophora (Janthinosoma) albigenu (Peryassu), Ochlerotatus (Ochlerotatus) fulvus (Wiedemann), and Ochlerotatus (Ochlerotatus) serratus (Theobald)] accounted for 70% of all mosquitoes captured in human-landing collections. Overall, biting activity occurred throughout the 24-h cycle but was higher during the daytime, primarily because of large populations of two day-biting species, Ps. albigenu and Oc. serratus. Oc. fulvus was active throughout the 24-h cycle but was more frequently collected during the evening. Oc. fulvus, Ps. albigenu, Culex (Melanoconion) pedroi Sirivanakarn & Belkin, and a mixture of Culex (Melaonoconion) vomerifer Komp, and Culex (Melanoconion) gnomatos Sallum, Huchings & Ferreira, accounted for 73% of the mosquitoes captured during darkness) by human collectors. In general, Ochlerotatus spp. and Psorophora spp. were more commonly captured in human-landing collections, whereas most Culex spp. were more frequently collected in the dry ice-baited CDC-type light traps. In general, mosquito populations were lowest from June through August when river levels were at their lowest. Two large population peaks occurred in November-December and in February-March as a result of "flood water" mosquito populations (e.g., Ps. albigenu). These data provide a better understanding of the taxonomy, population density, and seasonal distribution of potential mosquito vectors within the Amazon Basin region and allow for the development of appropriate vector and disease prevention strategies.
Subject(s)
Culicidae/pathogenicity , Animals , Animals, Domestic/parasitology , Arboviruses/isolation & purification , Chickens , Climate , Culicidae/classification , Demography , Dogs , Ecosystem , Geography , Humans , Insect Bites and Stings/epidemiology , Insect Bites and Stings/veterinary , Peru , SeasonsABSTRACT
Data from mosquito collections made in Belize, Central America, between September 1990 and April 1993 are presented. A total of 537 collections yielding 15,139 specimens are summarized. One genus, 4 subgenera, and 31 species are recorded from Belize for the 1st time. A checklist of the 111 mosquito species now known to occur in Belize is presented.