Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Chaos ; 31(5): 053110, 2021 May.
Article in English | MEDLINE | ID: mdl-34240941

ABSTRACT

Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and to "reconstruct" some supposed influences. In the 1970s, a new way of performing science under the name "chaos" emerged, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory. The purpose is to exhibit the diversity in the paths and to bring some elements-which were never published-illustrating the atmosphere of this period. Some peculiarities of chaos theory are also discussed.

2.
Chaos ; 29(1): 011101, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709122

ABSTRACT

Complex networks are the subject of fundamental interest from the scientific community at large. Several metrics have been introduced to characterize the structure of these networks, such as the degree distribution, degree correlation, path length, clustering coefficient, centrality measures, etc. Another important feature is the presence of network symmetries. In particular, the effect of these symmetries has been studied in the context of network synchronization, where they have been used to predict the emergence and stability of cluster synchronous states. Here, we provide theoretical, numerical, and experimental evidence that network symmetries play a role in a substantially broader class of dynamical models on networks, including epidemics, game theory, communication, and coupled excitable systems; namely, we see that in all these models, nodes that are related by a symmetry relation show the same time-averaged dynamical properties. This discovery leads us to propose reduction techniques for exact, yet minimal, simulation of complex networks dynamics, which we show are effective in order to optimize the use of computational resources, such as computation time and memory.

3.
Chaos ; 26(9): 094601, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27781481

ABSTRACT

The study of synchronization of coupled systems is currently undergoing a major surge fueled by recent discoveries of new forms of collective dynamics and the development of techniques to characterize a myriad of new patterns of network synchronization. This includes chimera states, phenomena determined by symmetry, remote synchronization, and asymmetry-induced synchronization. This Focus Issue presents a selection of contributions at the forefront of these developments, to which this introduction is intended to offer an up-to-date foundation.

4.
Sci Adv ; 2(4): e1501737, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27152349

ABSTRACT

Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.


Subject(s)
Computer Systems , Neural Networks, Computer , Physics , Electricity , Models, Theoretical , Nonlinear Dynamics
6.
Chaos ; 25(9): 097611, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26428564

ABSTRACT

We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years to a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.

7.
Nat Commun ; 5: 4079, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24923317

ABSTRACT

Synchronization is of central importance in power distribution, telecommunication, neuronal and biological networks. Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters or understand the conditions under which they form. Here we present a new framework and develop techniques for the analysis of network dynamics that shows the connection between network symmetries and cluster formation. The connection between symmetries and cluster synchronization is experimentally confirmed in the context of real networks with heterogeneities and noise using an electro-optic network. We experimentally observe and theoretically predict a surprising phenomenon in which some clusters lose synchrony without disturbing the others. Our analysis shows that such behaviour will occur in a wide variety of networks and node dynamics. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behaviour of networks ranging from neural to social.

8.
Chaos ; 23(1): 013125, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556962

ABSTRACT

Chaos has long been recognized to be generally advantageous from the perspective of control. In particular, the infinite number of unstable periodic orbits embedded in a chaotic set and the intrinsically sensitive dependence on initial conditions imply that a chaotic system can be controlled to a desirable state by using small perturbations. Investigation of chaos control, however, was largely limited to nonlinear dynamical systems in the classical realm. In this paper, we show that chaos may be used to modulate or harness quantum mechanical systems. To be concrete, we focus on quantum transport through nanostructures, a problem of considerable interest in nanoscience, where a key feature is conductance fluctuations. We articulate and demonstrate that chaos, more specifically transient chaos, can be effective in modulating the conductance-fluctuation patterns. Experimentally, this can be achieved by applying an external gate voltage in a device of suitable geometry to generate classically inaccessible potential barriers. Adjusting the gate voltage allows the characteristics of the dynamical invariant set responsible for transient chaos to be varied in a desirable manner which, in turn, can induce continuous changes in the statistical characteristics of the quantum conductance-fluctuation pattern. To understand the physical mechanism of our scheme, we develop a theory based on analyzing the spectrum of the generalized non-Hermitian Hamiltonian that includes the effect of leads, or electronic waveguides, as self-energy terms. As the escape rate of the underlying non-attracting chaotic set is increased, the imaginary part of the complex eigenenergy becomes increasingly large so that pointer states are more difficult to form, making smoother the conductance-fluctuation pattern.


Subject(s)
Models, Statistical , Nonlinear Dynamics , Quantum Theory , Computer Simulation , Electric Conductivity , Graphite , Nanostructures , Numerical Analysis, Computer-Assisted , Periodicity , Quantum Dots , Semiconductors , Time Factors
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056212, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214862

ABSTRACT

Recent numerical experiments of Pecora et al. [Phys. Rev. E 83, 065201 (2011)] have investigated tunneling between two-dimensional symmetric double wells separated by a tunneling barrier. The wells were bounded by hard walls and by the potential barrier which was created by a step increase from the zero potential within a well to a uniform barrier potential within the barrier region, which is a situation potentially realizable in the context of quantum dots. Numerical results for the splitting of energy levels between symmetric and antisymmetric eigenstates were calculated. It was found that the splittings vary erratically from state to state, and the statistics of these variations were studied for different well shapes with the fluctuation levels being much less in chaotic wells than in comparable nonchaotic wells. Here we develop a quantitative theory for the statistics of the energy level splittings for chaotic wells. Our theory is based on the random plane wave hypothesis of Berry. While the fluctuation statistics are very different for chaotic and nonchaotic well dynamics, we show that the mean splittings of differently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves.


Subject(s)
Electron Transport , Models, Statistical , Nonlinear Dynamics , Quantum Dots , Semiconductors , Computer Simulation
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 065201, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21797430

ABSTRACT

Quantum tunneling rates through a barrier separating two-dimensional, symmetric, double-well potentials are shown to depend on the classical dynamics of the billiard trajectories in each well and, hence, on the shape of the wells. For shapes that lead to regular (integrable) classical dynamics the tunneling rates fluctuate greatly with eigenenergies of the states sometimes by over two orders of magnitude. Contrarily, shapes that lead to completely chaotic trajectories lead to tunneling rates whose fluctuations are greatly reduced, a phenomenon we call regularization of tunneling rates. We show that a random-plane-wave theory of tunneling accounts for the mean tunneling rates and the small fluctuation variances for the chaotic systems.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 2): 066216, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21797470

ABSTRACT

Weakly chaotic or weakly interacting systems have a wide regime where the common random matrix theory modeling does not apply. As an example we consider cold atoms in a nearly integrable optical billiard with a displaceable wall (piston). The motion is completely chaotic but with a small Lyapunov exponent. The Hamiltonian matrix does not look like one taken from a Gaussian ensemble, but rather it is very sparse and textured. This can be characterized by parameters s and g which reflect the percentage of large elements and their connectivity, respectively. For g we use a resistor network calculation that has a direct relation to the semilinear response characteristics of the system, hence leading to a prediction regarding the energy absorption rate of cold atoms in optical billiards with vibrating walls.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036204, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19905197

ABSTRACT

Master-stability functions (MSFs) are fundamental to the study of synchronization in complex dynamical systems. For example, for a coupled oscillator network, a necessary condition for synchronization to occur is that the MSF at the corresponding normalized coupling parameters be negative. To understand the typical behaviors of the MSF for various chaotic oscillators is key to predicting the collective dynamics of a network of these oscillators. We address this issue by examining, systematically, MSFs for known chaotic oscillators. Our computations and analysis indicate that it is generic for MSFs being negative in a finite interval of a normalized coupling parameter. A general scheme is proposed to classify the typical behaviors of MSFs into four categories. These results are verified by direct simulations of synchronous dynamics on networks of actual coupled oscillators.


Subject(s)
Algorithms , Models, Theoretical , Nonlinear Dynamics , Oscillometry/methods , Computer Simulation
13.
Chaos ; 17(1): 013110, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17411246

ABSTRACT

In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e., attractor reconstruction. The process has focused primarily on intuitive, heuristic, and empirical arguments for selection of the key embedding parameters, delay and embedding dimension. This approach has left several longstanding, but common problems unresolved in which the standard approaches produce inferior results or give no guidance at all. We view the current reconstruction process as unnecessarily broken into separate problems. We propose an alternative approach that views the problem of choosing all embedding parameters as being one and the same problem addressable using a single statistical test formulated directly from the reconstruction theorems. This allows for varying time delays appropriate to the data and simultaneously helps decide on embedding dimension. A second new statistic, undersampling, acts as a check against overly long time delays and overly large embedding dimension. Our approach is more flexible than those currently used, but is more directly connected with the mathematical requirements of embedding. In addition, the statistics developed guide the user by allowing optimization and warning when embedding parameters are chosen beyond what the data can support. We demonstrate our approach on uni- and multivariate data, data possessing multiple time scales, and chaotic data. This unified approach resolves all the main issues in attractor reconstruction.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(1 Pt 2): 017201, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14995756

ABSTRACT

A rigorous analytical approach is developed to test for the existence of a continuous nonlinear functional relationship between systems. We compare the application of this nonlinear local technique to the existing analytical linear global approach in the setting of increasing additive noise. For natural systems with unknown levels of noise and nonlinearity, we propose a general framework for detecting coupling. Lastly, we demonstrate the applicability of this method to detect coupling between simultaneous, experimentally measured, intracellular voltages between neurons within a mammalian neuronal network.


Subject(s)
Biophysics , Nerve Net , Animals , Biophysical Phenomena , Electrophysiology , Sensitivity and Specificity
16.
Phys Rev Lett ; 89(5): 054101, 2002 Jul 29.
Article in English | MEDLINE | ID: mdl-12144443

ABSTRACT

We quantify the dynamical implications of the small-world phenomenon by considering the generic synchronization of oscillator networks of arbitrary topology. The linear stability of the synchronous state is linked to an algebraic condition of the Laplacian matrix of the network. Through numerics and analysis, we show how the addition of random shortcuts translates into improved network synchronizability. Applied to networks of low redundancy, the small-world route produces synchronizability more efficiently than standard deterministic graphs, purely random graphs, and ideal constructive schemes. However, the small-world property does not guarantee synchronizability: the synchronization threshold lies within the boundaries, but linked to the end of the small-world region.


Subject(s)
Models, Theoretical , Nerve Net , Neural Networks, Computer
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2A): 035204, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909147

ABSTRACT

A method for reconstructing dimensions of subspaces for weakly coupled dynamical systems is offered. The tool is able to extrapolate the subspace dimensions from the zero coupling limit, where the division of dimensions as per the algorithm is exact. Implementation of the proposed technique to multivariate data demonstrates its effectiveness in disentangling subspace dimensionalities also in the case of emergent synchronized motions, for both numerical and experimental systems.

18.
Chaos ; 10(3): 738-744, 2000 Sep.
Article in English | MEDLINE | ID: mdl-12779423

ABSTRACT

We describe two experiments in which we investigate the synchronization of coupled periodic oscillators. Each experimental system consists of two identical coupled electronic periodic oscillators that display bursts of desynchronization events similar to those observed previously in coupled chaotic systems. We measure the degree of synchronization as a function of coupling strength. In the first experiment, high-quality synchronization is achieved for all coupling strengths above a critical value. In the second experiment, no high-quality synchronization is observed. We compare our results to the predictions of the several proposed criteria for synchronization. We find that none of the criteria accurately predict the range of coupling strengths over which high-quality synchronization is observed. (c) 2000 American Institute of Physics.

19.
Chaos ; 7(4): 520-543, 1997 Dec.
Article in English | MEDLINE | ID: mdl-12779679

ABSTRACT

The field of chaotic synchronization has grown considerably since its advent in 1990. Several subdisciplines and "cottage industries" have emerged that have taken on bona fide lives of their own. Our purpose in this paper is to collect results from these various areas in a review article format with a tutorial emphasis. Fundamentals of chaotic synchronization are reviewed first with emphases on the geometry of synchronization and stability criteria. Several widely used coupling configurations are examined and, when available, experimental demonstrations of their success (generally with chaotic circuit systems) are described. Particular focus is given to the recent notion of synchronous substitution-a method to synchronize chaotic systems using a larger class of scalar chaotic coupling signals than previously thought possible. Connections between this technique and well-known control theory results are also outlined. Extensions of the technique are presented that allow so-called hyperchaotic systems (systems with more than one positive Lyapunov exponent) to be synchronized. Several proposals for "secure" communication schemes have been advanced; major ones are reviewed and their strengths and weaknesses are touched upon. Arrays of coupled chaotic systems have received a great deal of attention lately and have spawned a host of interesting and, in some cases, counterintuitive phenomena including bursting above synchronization thresholds, destabilizing transitions as coupling increases (short-wavelength bifurcations), and riddled basins. In addition, a general mathematical framework for analyzing the stability of arrays with arbitrary coupling configurations is outlined. Finally, the topic of generalized synchronization is discussed, along with data analysis techniques that can be used to decide whether two systems satisfy the mathematical requirements of generalized synchronization. (c) 1997 American Institute of Physics.

20.
Chaos ; 6(3): 432-439, 1996 Sep.
Article in English | MEDLINE | ID: mdl-12780273

ABSTRACT

We show that one can use recently introduced statistics for continuity and differentiability to show the effect of filters of infinite extent in time on a chaotic time series. The statistics point to a discontinuous or nondifferentiable function between the unfiltered attractor and the filtered attractor as the origin of attractor dimension increase when the filtering is severe. The density of discontinuities as a function of resolution follows a scaling relation. We present direct visualization of this effect in the filtered Henon attractor where the origin of dimension increase becomes obvious.

SELECTION OF CITATIONS
SEARCH DETAIL