Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8143, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065951

ABSTRACT

Neural networks are powerful tools for solving complex problems, but finding the right network topology for a given task remains an open question. Biology uses neurogenesis and structural plasticity to solve this problem. Advanced neural network algorithms are mostly relying on synaptic plasticity and learning. The main limitation in reconciling these two approaches is the lack of a viable hardware solution that could reproduce the bottom-up development of biological neural networks. Here, we show how the dendritic growth of PEDOT:PSS-based fibers through AC electropolymerization can implement structural plasticity during network development. We find that this strategy follows Hebbian principles and is able to define topologies that leverage better computing performances with sparse synaptic connectivity for solving non-trivial tasks. This approach is validated in software simulation, and offers up to 61% better network sparsity on classification and 50% in signal reconstruction tasks.

2.
Biosens Bioelectron ; 237: 115538, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37506488

ABSTRACT

Microelectrode Arrays (MEAs) are popular tools for in vitro extracellular recording. They are often optimized by surface engineering to improve affinity with neurons and guarantee higher recording quality and stability. Recently, PEDOT:PSS has been used to coat microelectrodes due to its good biocompatibility and low impedance, which enhances neural coupling. Herein, we investigate on electro-co-polymerization of EDOT with its triglymated derivative to control valence between monomer units and hydrophilic functions on a conducting polymer. Molecular packing, cation complexation, dopant stoichiometry are governed by the glycolation degree of the electro-active coating of the microelectrodes. Optimal monomer ratio allows fine-tuning the material hydrophilicity and biocompatibility without compromising the electrochemical impedance of microelectrodes nor their stability while interfaced with a neural cell culture. After incubation, sensing readout on the modified electrodes shows higher performances with respect to unmodified electropolymerized PEDOT, with higher signal-to-noise ratio (SNR) and higher spike counts on the same neural culture. Reported SNR values are superior to that of state-of-the-art PEDOT microelectrodes and close to that of state-of-the-art 3D microelectrodes, with a reduced fabrication complexity. Thanks to this versatile technique and its impact on the surface chemistry of the microelectrode, we show that electro-co-polymerization trades with many-compound properties to easily gather them into single macromolecular structures. Applied on sensor arrays, it holds great potential for the customization of neurosensors to adapt to environmental boundaries and to optimize extracted sensing features.


Subject(s)
Biosensing Techniques , Microelectrodes , Electrodes, Implanted , Polymers/chemistry , Neurons/physiology
3.
Biomed Phys Eng Express ; 9(3)2023 03 17.
Article in English | MEDLINE | ID: mdl-36745905

ABSTRACT

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.


Subject(s)
Cell Culture Techniques , Neurons , Microelectrodes , Action Potentials/physiology , Neurons/physiology , Gold
4.
Sci Rep ; 12(1): 6395, 2022 04 16.
Article in English | MEDLINE | ID: mdl-35430578

ABSTRACT

Electropolymerization is a bottom-up materials engineering process of micro/nano-scale that utilizes electrical signals to deposit conducting dendrites morphologies by a redox reaction in the liquid phase. It resembles synaptogenesis in the brain, in which the electrical stimulation in the brain causes the formation of synapses from the cellular neural composites. The strategy has been recently explored for neuromorphic engineering by establishing link between the electrical signals and the dendrites' shapes. Since the geometry of these structures determines their electrochemical properties, understanding the mechanisms that regulate polymer assembly under electrically programmed conditions is an important aspect. In this manuscript, we simulate this phenomenon using mesoscale simulations, taking into account the important features of spatial-temporal potential mapping based on the time-varying signal, the motion of charged particles in the liquid due to the electric field, and the attachment of particles on the electrode. The study helps in visualizing the motion of the charged particles in different electrical conditions, which is not possible to probe experimentally. Consistent with the experiments, the higher AC frequency of electrical activities favors linear wire-like growth, while lower frequency leads to more dense and fractal dendrites' growth, and voltage offset leads to asymmetrical growth. We find that dendrites' shape and growth process systematically depend on particle concentration and random scattering. We discover that the different dendrites' architectures are associated with different Laplace and diffusion fields, which govern the monomers' trajectory and subsequent dendrites' growth. Such unconventional engineering routes could have a variety of applications from neuromorphic engineering to bottom-up computing strategies.


Subject(s)
Dendrites , Synapses , Dendrites/physiology , Diffusion , Electric Conductivity , Polymerization , Synapses/physiology
5.
Nat Commun ; 12(1): 6898, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824266

ABSTRACT

Although materials and processes are different from biological cells', brain mimicries led to tremendous achievements in parallel information processing via neuromorphic engineering. Inexistent in electronics, we emulate dendritic morphogenesis by electropolymerization in water, aiming in operando material modification for hardware learning. Systematic study of applied voltage-pulse parameters details on tuning independently morphological aspects of micrometric dendrites': fractal number, branching degree, asymmetry, density or length. Growths time-lapse image processing shows spatial features to be dynamically dependent, and expand distinctively before and after conductive bridging with two electro-generated dendrites. Circuit-element analysis and impedance spectroscopy confirms their morphological control in temporal windows where growth kinetics is finely perturbed by the input frequency and duty cycle. By the emulation of one's most preponderant mechanisms for brain's long-term memory, its implementation in vicinity of sensing arrays, neural probes or biochips shall greatly optimize computational costs and recognition required to classify high-dimensional patterns from complex environments.

6.
Adv Sci (Weinh) ; 8(24): e2102973, 2021 12.
Article in English | MEDLINE | ID: mdl-34716682

ABSTRACT

One of the major limitations of standard top-down technologies used in today's neuromorphic engineering is their inability to map the 3D nature of biological brains. Here, it is shown how bipolar electropolymerization can be used to engineer 3D networks of PEDOT:PSS dendritic fibers. By controlling the growth conditions of the electropolymerized material, it is investigated how dendritic fibers can reproduce structural plasticity by creating structures of controllable shape. Gradual topologies evolution is demonstrated in a multielectrode configuration. A detailed electrical characterization of the PEDOT:PSS dendrites is conducted through DC and impedance spectroscopy measurements and it is shown how organic electrochemical transistors (OECT) can be realized with these structures. These measurements reveal that quasi-static and transient response of OECTs can be adjusted by controlling dendrites' morphologies. The unique properties of organic dendrites are used to demonstrate short-term, long-term, and structural plasticity, which are essential features required for future neuromorphic hardware development.


Subject(s)
Biomimetics/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Dendrites , Models, Neurological , Transistors, Electronic , Dielectric Spectroscopy
7.
Sensors (Basel) ; 17(3)2017 Mar 11.
Article in English | MEDLINE | ID: mdl-28287475

ABSTRACT

We report on hydrazine-sensing organic electrochemical transistors (OECTs) with a design consisting of concentric annular electrodes. The design engineering of these OECTs was motivated by the great potential of using OECT sensing arrays in fields such as bioelectronics. In this work, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs have been studied as aqueous sensors that are specifically sensitive to the lethal hydrazine molecule. These amperometric sensors have many relevant features for the development of hydrazine sensors, such as a sensitivity down to 10-5 M of hydrazine in water, an order of magnitude higher selectivity for hydrazine than for nine other water-soluble common analytes, the capability to entirely recover its base signal after water flushing, and a very low operation voltage. The specificity for hydrazine to be sensed by our OECTs is caused by its catalytic oxidation at the gate electrode, and enables an increase in the output current modulation of the devices. This has permitted the device-geometry study of the whole series of 80 micrometric OECT devices with sub-20-nm PEDOT:PSS layers, channel lengths down to 1 µm, and a specific device geometry of coplanar and concentric electrodes. The numerous geometries unravel new aspects of the OECT mechanisms governing the electrochemical sensing behaviours of the device-more particularly the effect of the contacts which are inherent at the micro-scale. By lowering the device cross-talk, micrometric gate-integrated radial OECTs shall contribute to the diminishing of the readout invasiveness and therefore further promote the development of OECT biosensors.

8.
Angew Chem Int Ed Engl ; 55(35): 10493-7, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27440434

ABSTRACT

Ten new efficient p-dopants for conductivity doping of organic semiconductors for OLEDs are identified. The key advantage of the electrophilic tris(carboxylato) bismuth(III) compounds is the unique low absorption of the resulting doped layers which promotes the efficiency of OLED devices. The combination of these features with their low fabrication cost, volatility, and stability, make these materials very attractive as dopants in organic electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...