Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2360: 217-233, 2022.
Article in English | MEDLINE | ID: mdl-34495518

ABSTRACT

Cultivated cotton (Gossypium hirsutum) is heavily attacked by various species of insects worldwide and breeding of new varieties resistant to pests is still a hard battle to win. RNAi technology is an important reverse genetics tool to induce gene silencing in eukaryotic organisms and produce phenotypic modifications. In cotton, RNAi was applied to investigate gene function and enhance resistance to insects and pathogens. Different methods and techniques can be used to synthetize double stranded RNA (dsRNA) into plant cells. The Agrobacterium-mediated transformation is a common method to introduce RNAi binary plasmids into cotton genome and obtain stable transgenics plants. This methodology includes the coculture of cotton tissues with Agrobacterium cultures, selection of transgenic cells and induction of somatic embryogenesis to finally obtain transgenic plants after a relatively long period of time. The transient synthesis of dsRNA mediated by virus-induced gene silencing (VIGS) in cotton is an alternative to anticipate the silencing effect of a specific RNA sequence, prior to the development of a stable transgenic plant. VIGS vectors are incorporated into the plant by agroinfiltration technique. During VIGS replication inside plant cells, synthetized dsRNA allows the study on specific heterologous gene expression including the phenotypic effect on herbivorous target pests, thus facilitating a rapid evaluation of dsRNA expressed in cotton plants against individual insect target genes. Here we describe the complementation of these two techniques to evaluate RNAi-based cotton plant protection against insect pests.


Subject(s)
Gossypium , Agrobacterium/genetics , Animals , Gossypium/genetics , Insecta , Plant Breeding , Plants, Genetically Modified/genetics , RNA Interference , RNA, Double-Stranded/genetics
2.
Neotrop Entomol ; 50(1): 121-128, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33025569

ABSTRACT

The "cotton boll weevil" (Anthonomus grandis Boheman) is a key pest in America whose larval stage develops within the cotton flower bud. During its development, the larva uses the flower bud as food and as a shelter from predators. This behavior limits the effective control through conventional insecticide applications and biocontrol techniques. Increasing genetic information from insects has allowed the development of new control technologies based on the use of RNA interference (RNAi) to design orally delivered double-stranded RNA (dsRNA) strategies. In this study, we evaluated the effect of continuous oral administration of six specific dsRNA in order to identify an effective target gene for RNAi-mediated control of cotton boll weevil. First, six selected A. grandis gene fragments were amplified and cloned to perform in vivo synthesis of the specific dsRNA, and subsequently, larvae and adults were fed with this dsRNA for 2 weeks. Larvae mortality ranged from 40 to 60% depending on the targeted gene sequence. Indeed, α-amylase and cytochrome p450 dsRNAs were the most effective. Oral administration in adults caused smaller but still significant death rates (15-30%). Thus, the results demonstrated RNAi responses depend on life stages and target genes. The dsRNA ingestion was capable of providing knockdown mRNA levels in cotton boll weevil midgut and this effect was significantly higher in the larval stage. In this study, we present a new report of silencing of midgut genes in A. grandis larva induced by continuously feeding with dsRNA. This potential new tool should be further evaluated in cotton boll weevil control strategies.


Subject(s)
Gene Knockdown Techniques , Insect Control/methods , RNA, Double-Stranded , Weevils , Administration, Oral , Animals , Digestive System , Gossypium , RNA Interference
3.
J Invertebr Pathol ; 172: 107354, 2020 05.
Article in English | MEDLINE | ID: mdl-32194030

ABSTRACT

Bacillus thuringiensis toxins of the Cry1I class have dual specificity for insects in the orders Coleoptera and Lepidoptera. We assessed the toxicity of a Cry1Ia protein from an Argentinian B. thuringiensis strain against agricultural pests in the families Tenebrionidae, Curculionidae, Noctuidae and Tortricidae. Three recombinant protein variants were produced that differed in length and fusion tag position to rule out artifactual results. The protein was toxic to Cydia pomonella and Rachiplusia nu. In contrast, Alphitobius diaperinus, Anthonomus grandis and Spodoptera frugiperda were not susceptible. The results are discussed with respect to previous studies and the prospective use of Cry1Ia in strategies to control major cotton pests in the region.


Subject(s)
Bacillus thuringiensis Toxins/pharmacology , Bacillus thuringiensis/chemistry , Coleoptera/drug effects , Endotoxins/pharmacology , Hemolysin Proteins/pharmacology , Insect Control , Moths/drug effects , Pest Control, Biological , Animals , Argentina
SELECTION OF CITATIONS
SEARCH DETAIL
...