Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 417-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38658748

ABSTRACT

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Proliferation , Dinoprostone , Lymphocytes, Tumor-Infiltrating , Neoplasms , Stem Cells , Tumor Escape , Animals , Female , Humans , Male , Mice , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Dinoprostone/metabolism , Disease Models, Animal , Hepatocyte Nuclear Factor 1-alpha/metabolism , Interleukin-2 , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/prevention & control , Receptors, Prostaglandin E, EP2 Subtype/deficiency , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/deficiency , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/immunology , Stem Cells/metabolism , Tumor Escape/immunology
2.
Cancer Cell ; 41(8): 1498-1515.e10, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37451271

ABSTRACT

Type 1 conventional dendritic cells (cDC1) can support T cell responses within tumors but whether this determines protective versus ineffective anti-cancer immunity is poorly understood. Here, we use imaging-based deep learning to identify intratumoral cDC1-CD8+ T cell clustering as a unique feature of protective anti-cancer immunity. These clusters form selectively in stromal tumor regions and constitute niches in which cDC1 activate TCF1+ stem-like CD8+ T cells. We identify a distinct population of immunostimulatory CCR7neg cDC1 that produce CXCL9 to promote cluster formation and cross-present tumor antigens within these niches, which is required for intratumoral CD8+ T cell differentiation and expansion and promotes cancer immune control. Similarly, in human cancers, CCR7neg cDC1 interact with CD8+ T cells in clusters and are associated with patient survival. Our findings reveal an intratumoral phase of the anti-cancer T cell response orchestrated by tumor-residing cDC1 that determines protective versus ineffective immunity and could be exploited for cancer therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Receptors, CCR7/metabolism , Neoplasms/therapy , Antigens, Neoplasm , Dendritic Cells
3.
Immunity ; 56(6): 1341-1358.e11, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37315536

ABSTRACT

Type 1 conventional dendritic cells (cDC1s) are critical for anti-cancer immunity. Protective anti-cancer immunity is thought to require cDC1s to sustain T cell responses within tumors, but it is poorly understood how this function is regulated and whether its subversion contributes to immune evasion. Here, we show that tumor-derived prostaglandin E2 (PGE2) programmed a dysfunctional state in intratumoral cDC1s, disabling their ability to locally orchestrate anti-cancer CD8+ T cell responses. Mechanistically, cAMP signaling downstream of the PGE2-receptors EP2 and EP4 was responsible for the programming of cDC1 dysfunction, which depended on the loss of the transcription factor IRF8. Blockade of the PGE2-EP2/EP4-cDC1 axis prevented cDC1 dysfunction in tumors, locally reinvigorated anti-cancer CD8+ T cell responses, and achieved cancer immune control. In human cDC1s, PGE2-induced dysfunction is conserved and associated with poor cancer patient prognosis. Our findings reveal a cDC1-dependent intratumoral checkpoint for anti-cancer immunity that is targeted by PGE2 for immune evasion.


Subject(s)
Dinoprostone , Neoplasms , Humans , Antibodies , CD8-Positive T-Lymphocytes , Dendritic Cells , Receptors, Prostaglandin E
4.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Article in English | MEDLINE | ID: mdl-36623939

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , T-Lymphocytes , Humans , Microscopy, Fluorescence/methods
5.
Adv Immunol ; 147: 61-88, 2020.
Article in English | MEDLINE | ID: mdl-32981635

ABSTRACT

Natural killer (NK) cells are innate immune cells critically involved in the control of cancer. Their important role in cancer immunity reflects the ability of NK cells to recognize malignant cells through an array of germline-encoded receptors expressed on their surface, enabling NK cells to detect and rapidly kill tumor cells through targeted cytotoxicity. In addition to their cytotoxic activity, NK cells fulfill a fundamental and often underappreciated role in the local orchestration of cancer immunity through their ability to communicate with innate and adaptive immune cells within the tumor microenvironment (TME), which is achieved through the secretion of multiple chemokines, cytokines, and growth factors. Within tumor tissue, NK cells regulate the recruitment, survival and functional activity of various immune cells including monocytes, granulocytes, dendritic cells and T cells, thereby shaping intratumoral immune cell composition and functionality. Emerging evidence further suggest a role of NK cells in the regulation of stromal cells within the TME. Here, we discuss key aspects of NK cell communication with other intratumoral cell types and its role for cancer immunity. Strategies aimed at boosting anti-cancer immunity by enhancing NK cell communication and functionality within tumor tissue provide attractive new ways for treatment of cancer patients.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/immunology , Stromal Cells/immunology , Animals , Cell Communication , Cytokines/metabolism , Humans , Immunity, Innate , Immunologic Surveillance , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...