Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Eur J Epidemiol ; 38(10): 1043-1052, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37555907

ABSTRACT

Periodic revisions of the international classification of diseases (ICD) ensure that the classification reflects new practices and knowledge; however, this complicates retrospective research as diagnoses are coded in different versions. For longitudinal disease trajectory studies, a crosswalk is an essential tool and a comprehensive mapping between ICD-8 and ICD-10 has until now been lacking. In this study, we map all ICD-8 morbidity codes to ICD-10 in the expanded Danish ICD version. We mapped ICD-8 codes to ICD-10, using a many-to-one system inspired by general equivalence mappings such that each ICD-8 code maps to a single ICD-10 code. Each ICD-8 code was manually and unidirectionally mapped to a single ICD-10 code based on medical setting and context. Each match was assigned a score (1 of 4 levels) reflecting the quality of the match and, if applicable, a "flag" signalling choices made in the mapping. We provide the first complete mapping of the 8596 ICD-8 morbidity codes to ICD-10 codes. All Danish ICD-8 codes representing diseases were mapped and 5106 (59.4%) achieved the highest consistency score. Only 334 (3.9%) of the ICD-8 codes received the lowest mapping consistency score. The mapping provides a scaffold for translation of ICD-8 to ICD-10, which enable longitudinal disease studies back to and 1969 in Denmark and to 1965 internationally with further adaption.

3.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Article in English | MEDLINE | ID: mdl-36593394

ABSTRACT

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Algorithms , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics
4.
Front Nutr ; 9: 920362, 2022.
Article in English | MEDLINE | ID: mdl-35873420

ABSTRACT

Background: Human milk oligosaccharides (HMOs) have important biological functions for a healthy development in early life. Objective: This study aimed to investigate gut maturation effects of an infant formula containing five HMOs (2'-fucosyllactose, 2',3-di-fucosyllactose, lacto-N-tetraose, 3'-sialyllactose, and 6'-sialyllactose). Methods: In a multicenter study, healthy infants (7-21 days old) were randomly assigned to a standard cow's milk-based infant formula (control group, CG); the same formula with 1.5 g/L HMOs (test group 1, TG1); or with 2.5 g/L HMOs (test group 2, TG2). A human milk-fed group (HMG) was enrolled as a reference. Fecal samples collected at baseline (n∼150/formula group; HMG n = 60), age 3 (n∼140/formula group; HMG n = 65) and 6 (n∼115/formula group; HMG n = 60) months were analyzed for microbiome (shotgun metagenomics), metabolism, and biomarkers. Results: At both post-baseline visits, weighted UniFrac analysis indicated different microbiota compositions in the two test groups (TGs) compared to CG (P < 0.01) with coordinates closer to that of HMG. The relative abundance of Bifidobacterium longum subsp. infantis (B. infantis) was higher in TGs vs. CG (P < 0.05; except at 6 months: TG2 vs. CG P = 0.083). Bifidobacterium abundance was higher by ∼45% in TGs vs. CG at 6-month approaching HMG. At both post-baseline visits, toxigenic Clostridioides difficile abundance was 75-85% lower in TGs vs. CG (P < 0.05) and comparable with HMG. Fecal pH was significantly lower in TGs vs. CG, and the overall organic acid profile was different in TGs vs. CG, approaching HMG. At 3 months, TGs (vs. CG) had higher secretory immunoglobulin A (sIgA) and lower alpha-1-antitrypsin (P < 0.05). At 6 months, sIgA in TG2 vs. CG remained higher (P < 0.05), and calprotectin was lower in TG1 (P < 0.05) vs. CG. Conclusion: Infant formula with a specific blend of five HMOs supports the development of the intestinal immune system and gut barrier function and shifts the gut microbiome closer to that of breastfed infants with higher bifidobacteria, particularly B. infantis, and lower toxigenic Clostridioides difficile. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/], identifier [NCT03722550].

5.
Nutrients ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684099

ABSTRACT

This open-label, non-randomized, multicenter trial (Registration: NCT03661736) aimed to assess if an amino acid-based formula (AAF) supplemented with two human milk oligosaccharides (HMO) supports normal growth and is well tolerated in infants with a cow's milk protein allergy (CMPA). Term infants aged 1-8 months with moderate-to-severe CMPA were enrolled. The study formula was an AAF supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT). Infants were fed the study formula for 4 months and were offered to remain on the formula until 12 months of age. Tolerance and safety were assessed throughout the trial. Out of 32 infants (mean age 18.6 weeks; 20 (62.5%) male), 29 completed the trial. During the 4-month principal study period, the mean weight-for-age Z score (WAZ) increased from -0.31 at the baseline to +0.28 at the 4-months' follow-up. Linear and head growth also progressed along the WHO child growth reference, with a similar small upward trend. The formula was well tolerated and had an excellent safety profile. When comparing the microbiome at the baseline to the subsequent visits, there was a significant on-treatment enrichment in HMO-utilizing bifidobacteria, which was associated with a significant increase in fecal short-chain fatty acids. In addition, we observed a significant reduction in the abundance of fecal Proteobacteria, suggesting that the HMO-supplemented study formula partially corrected the gut microbial dysbiosis in infants with CMPA.


Subject(s)
Gastrointestinal Microbiome , Milk Hypersensitivity , Amino Acids , Animals , Cattle , Female , Humans , Infant , Infant Formula , Male , Milk, Human , Oligosaccharides
6.
Cell Rep Med ; 3(1): 100477, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35106505

ABSTRACT

The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.


Subject(s)
Diabetes Mellitus, Type 2/diagnosis , Adult , Diabetes Mellitus, Type 2/genetics , Disease Progression , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genomics , Humans , Male , Middle Aged , Phenotype , Risk Factors
7.
Nat Med ; 28(2): 303-314, 2022 02.
Article in English | MEDLINE | ID: mdl-35177860

ABSTRACT

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Microbiota , Humans , Longitudinal Studies , Metabolome , Middle Aged
8.
Nature ; 600(7889): 500-505, 2021 12.
Article in English | MEDLINE | ID: mdl-34880489

ABSTRACT

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Microbiota , Clostridiales , Humans , Metabolome
9.
Sci Rep ; 11(1): 13252, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168163

ABSTRACT

Knowledge about in vivo effects of human circulating C-6 hydroxylated bile acids (BAs), also called muricholic acids, is sparse. It is unsettled if the gut microbiome might contribute to their biosynthesis. Here, we measured a range of serum BAs and related them to markers of human metabolic health and the gut microbiome. We examined 283 non-obese and obese Danish adults from the MetaHit study. Fasting concentrations of serum BAs were quantified using ultra-performance liquid chromatography-tandem mass-spectrometry. The gut microbiome was characterized with shotgun metagenomic sequencing and genome-scale metabolic modeling. We find that tauro- and glycohyocholic acid correlated inversely with body mass index (P = 4.1e-03, P = 1.9e-05, respectively), waist circumference (P = 0.017, P = 1.1e-04, respectively), body fat percentage (P = 2.5e-03, P = 2.3e-06, respectively), insulin resistance (P = 0.051, P = 4.6e-4, respectively), fasting concentrations of triglycerides (P = 0.06, P = 9.2e-4, respectively) and leptin (P = 0.067, P = 9.2e-4). Tauro- and glycohyocholic acids, and tauro-a-muricholic acid were directly linked with a distinct gut microbial community primarily composed of Clostridia species (P = 0.037, P = 0.013, P = 0.027, respectively). We conclude that serum conjugated C-6-hydroxylated BAs associate with measures of human metabolic health and gut communities of Clostridia species. The findings merit preclinical interventions and human feasibility studies to explore the therapeutic potential of these BAs in obesity and type 2 diabetes.


Subject(s)
Bile Acids and Salts/blood , Clostridium/metabolism , Gastrointestinal Microbiome , Adiposity , Body Mass Index , Cholic Acids/blood , Chromatography, High Pressure Liquid , Clostridium/genetics , Deoxycholic Acid/blood , Female , Gastrointestinal Microbiome/genetics , Humans , Logistic Models , Male , Metagenomics , Middle Aged , Obesity/blood , Obesity/microbiology , Tandem Mass Spectrometry , Taurocholic Acid/blood , Waist Circumference
11.
Genome Med ; 12(1): 109, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33261667

ABSTRACT

BACKGROUND: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D. METHODS: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts. RESULTS: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling. CONCLUSIONS: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Phenotype , Transcriptome , Cohort Studies , Gene Expression Regulation , Genome-Wide Association Study , Humans , Insulin , Insulin Resistance , Leukocytes
12.
Nat Commun ; 11(1): 5881, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33208748

ABSTRACT

Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.


Subject(s)
Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome , Imidazoles/blood , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Female , Histidine/metabolism , Humans , Male , Middle Aged
13.
PLoS Med ; 17(6): e1003149, 2020 06.
Article in English | MEDLINE | ID: mdl-32559194

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.


Subject(s)
Fatty Liver/etiology , Machine Learning , Diabetes Complications/etiology , Female , Humans , Male , Middle Aged , Models, Statistical , Prospective Studies , Reproducibility of Results , Risk Assessment
14.
Nat Protoc ; 13(12): 2781-2800, 2018 12.
Article in English | MEDLINE | ID: mdl-30382244

ABSTRACT

We recently presented a three-pronged association study that integrated human intestinal microbiome data derived from shotgun-based sequencing with untargeted serum metabolome data and measures of host physiology. Metabolome and microbiome data are high dimensional, posing a major challenge for data integration. Here, we present a step-by-step computational protocol that details and discusses the dimensionality-reduction techniques used and methods for subsequent integration and interpretation of such heterogeneous types of data. Dimensionality reduction was achieved through a combination of data normalization approaches, binning of co-abundant genes and metabolites, and integration of prior biological knowledge. The use of prior knowledge to overcome functional redundancy across microbiome species is one central advance of our method over available alternative approaches. Applying this framework, other investigators can integrate various '-omics' readouts with variables of host physiology or any other phenotype of interest (e.g., connecting host and microbiome readouts to disease severity or treatment outcome in a clinical cohort) in a three-pronged association analysis to identify potential mechanistic links to be tested in experimental settings. Although we originally developed the framework for a human metabolome-microbiome study, it is generalizable to other organisms and environmental metagenomes, as well as to studies including other -omics domains such as transcriptomics and proteomics. The provided R code runs in ~1 h on a standard PC.


Subject(s)
Computational Biology/methods , Gastrointestinal Microbiome , Metabolome , Serum/metabolism , Humans , Metabolomics/methods , Phenotype , Software , Workflow
15.
PLoS One ; 13(1): e0189886, 2018.
Article in English | MEDLINE | ID: mdl-29293525

ABSTRACT

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Animals , Humans , Insulin Secretion , Mice
17.
Front Genet ; 8: 43, 2017.
Article in English | MEDLINE | ID: mdl-28473845

ABSTRACT

Type 2 diabetes (T2D) is a complex disease that involves multiple genes. Numerous risk loci have already been associated with T2D, although many susceptibility genes remain to be identified given heritability estimates. Systems biology approaches hold potential for discovering novel T2D genes by considering their biological context, such as tissue-specific protein interaction partners. Pancreatic islets are a key T2D tissue and many of the known genetic risk variants lead to impaired islet function, hence a better understanding of the islet-specific dysregulation in the disease-state is essential to unveil the full potential of person-specific profiles. Here we identify 3,692 overlapping pancreatic islet protein complexes (containing 10,805 genes) by integrating islet gene and protein expression data with protein interactions. We found 24 of these complexes to be significantly enriched for genes associated with diabetic phenotypes through heterogeneous evidence sources, including genetic variation, methylation, and gene expression in islets. The analysis specifically revealed ten T2D candidate genes with probable roles in islets (ANPEP, HADH, FAM105A, PDLIM4, PDLIM5, MAP2K4, PPP2R5E, SNX13, GNAS, and FRS2), of which the last six are novel in the context of T2D and the data that went into the analysis. Fifteen of the twenty-four complexes were further enriched for combined genetic associations with glycemic traits, exemplifying how perturbation of protein complexes by multiple small effects can give rise to diabetic phenotypes. The complex nature of T2D ultimately prompts an understanding of the individual patients at the network biology level. We present the foundation for such work by exposing a subset of the global interactome that is dysregulated in T2D and consequently provides a good starting point when evaluating an individual's alterations at the genome, transcriptome, or proteome level in relation to T2D in clinical settings.

18.
Nature ; 535(7612): 376-81, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27409811

ABSTRACT

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Subject(s)
Gastrointestinal Microbiome/physiology , Insulin Resistance , Metabolome , Serum/metabolism , Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/metabolism , Animals , Bacteroides/physiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/microbiology , Fasting/blood , Fasting/metabolism , Glucose Intolerance/blood , Glucose Intolerance/microbiology , Humans , Male , Metagenome , Mice , Mice, Inbred C57BL , Netherlands , Prevotella/physiology
19.
Nat Rev Endocrinol ; 12(6): 337-46, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27062931

ABSTRACT

Genomic studies have greatly advanced our understanding of the multifactorial aetiology of type 2 diabetes mellitus (T2DM) as well as the multiple subtypes of monogenic diabetes mellitus. In this Review, we discuss the existing pharmacogenetic evidence in both monogenic diabetes mellitus and T2DM. We highlight mechanistic insights from the study of adverse effects and the efficacy of antidiabetic drugs. The identification of extreme sulfonylurea sensitivity in patients with diabetes mellitus owing to heterozygous mutations in HNF1A represents a clear example of how pharmacogenetics can direct patient care. However, pharmacogenomic studies of response to antidiabetic drugs in T2DM has yet to be translated into clinical practice, although some moderate genetic effects have now been described that merit follow-up in trials in which patients are selected according to genotype. We also discuss how future pharmacogenomic findings could provide insights into treatment response in diabetes mellitus that, in addition to other areas of human genetics, facilitates drug discovery and drug development for T2DM.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug-Related Side Effects and Adverse Reactions/genetics , Hypoglycemic Agents/therapeutic use , Pharmacogenomic Variants/genetics , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Diabetes Mellitus, Type 2/genetics , Drug Discovery , Edema/chemically induced , Edema/genetics , Gastrointestinal Diseases/chemically induced , Gastrointestinal Diseases/genetics , Genome-Wide Association Study , Heart Failure/chemically induced , Heart Failure/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Humans , Hypoglycemia/chemically induced , Hypoglycemia/genetics , Metformin/adverse effects , Pharmacogenetics , Sulfonylurea Compounds/therapeutic use , Systems Biology , Thiazolidinediones/adverse effects
20.
NPJ Genom Med ; 1: 16035, 2016.
Article in English | MEDLINE | ID: mdl-29263820

ABSTRACT

As weight-loss surgery is an effective treatment for the glycaemic control of type 2 diabetes in obese patients, yet not all patients benefit, it is valuable to find predictive factors for this diabetic remission. This will help elucidating possible mechanistic insights and form the basis for prioritising obese patients with dysregulated diabetes for surgery where diabetes remission is of interest. In this study, we combine both clinical and genomic factors using heuristic methods, informed by prior biological knowledge in order to rank factors that would have a role in predicting diabetes remission, and indeed in identifying patients who may have low likelihood in responding to bariatric surgery for improved glycaemic control. Genetic variants from the Illumina CardioMetaboChip were prioritised through single-association tests and then seeded a larger selection from protein-protein interaction networks. Artificial neural networks allowing nonlinear correlations were trained to discriminate patients with and without surgery-induced diabetes remission, and the importance of each clinical and genetic parameter was evaluated. The approach highlighted insulin treatment, baseline HbA1c levels, use of insulin-sensitising agents and baseline serum insulin levels, as the most informative variables with a decent internal validation performance (74% accuracy, area under the curve (AUC) 0.81). Adding information for the eight top-ranked single nucleotide polymorphisms (SNPs) significantly boosted classification performance to 84% accuracy (AUC 0.92). The eight SNPs mapped to eight genes - ABCA1, ARHGEF12, CTNNBL1, GLI3, PROK2, RYBP, SMUG1 and STXBP5 - three of which are known to have a role in insulin secretion, insulin sensitivity or obesity, but have not been indicated for diabetes remission after bariatric surgery before.

SELECTION OF CITATIONS
SEARCH DETAIL
...