Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Hortic Res ; 11(9): uhae184, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39247888

ABSTRACT

Nitric oxide (NO) is a redox-dependent signaling molecule that plays a crucial role in regulating a wide range of biological processes in plants. It functions by post-translationally modifying proteins, primarily through S-nitrosation. Thioredoxin (Trx), a small and ubiquitous protein with multifunctional properties, plays a pivotal role in the antioxidant defense system. However, the regulatory mechanism governing the response of tomato Trxh (SlTrxh) to excessive nitrate stress remains unknown. In this study, overexpression or silencing of SlTrxh in tomato led to increased or decreased nitrate stress tolerance, respectively. The overexpression of SlTrxh resulted in a reduction in levels of reactive oxygen species (ROS) and an increase in S-nitrosothiol (SNO) contents; conversely, silencing SlTrxh exhibited the opposite trend. The level of S-nitrosated SlTrxh was increased and decreased in SlTrxh overexpression and RNAi plants after nitrate treatment, respectively. SlTrxh was found to be susceptible to S-nitrosation both in vivo and in vitro, with Cysteine 54 potentially being the key site for S-nitrosation. Protein interaction assays revealed that SlTrxh physically interacts with SlGrx9, and this interaction is strengthened by S-nitrosation. Moreover, a combination of yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), and transient expression assays confirmed the direct binding of SlMYB86 to the SlTrxh promoter, thereby enhancing its expression. SlMYB86 is located in the nucleus and SlMYB86 overexpressed and knockout tomato lines showed enhanced and decreased nitrate stress tolerance, respectively. Our findings indicate that SlTrxh functions downstream of SlMYB86 and highlight the potential significance of S-nitrosation of SlTrxh in modulating its function under nitrate stress.

2.
Physiol Plant ; 176(4): e14490, 2024.
Article in English | MEDLINE | ID: mdl-39169549

ABSTRACT

Seed germination and dormancy represent critical phases in the life cycle of plants, tightly regulated by endogenous phytochrome levels and environment signals. High temperatures (HT) induce the overaccumulation of reactive oxygen species (ROS) and increase abscisic acid (ABA), thereby inhibiting seed germination. Our previous findings showed that HT induced the burst of reactive nitrogen species (RNS), increasing the S-nitrosylation modification of HFR1, which effectively blocks seed germination. Importantly, stabilizing HFR1 has been shown to significantly mitigate the inhibitory effect of HT on seed germination. In this study, we reported that HT increased the protein abundance of ABI4, a crucial component in ABA signaling, which in turn activates the expression of RbohD while suppressing the expression of VTC2. This leads to the rapid generation of ROS, thereby inhibiting seed germination. Consistently, the seed germination of abi4 mutant showed insensitivity to HT with lower ROS level during seed germination, whereas transgenic lines overexpressing ABI4 showed reduced germination rates accompanied by elevated ROS levels. Furthermore, we noted that HFR1 interacts with ABI4 to sequester its activity under normal conditions. However, HT-induced ROS triggered the degradation of HFR1, consequently releasing ABI4 activity. This activation of ABI4 promotes RbohD expression, culminating in a ROS burst that suppresses seed germination. Thus, our study unveils a novel function for ABI4 in regulating ROS level and seed germination under HT stress. Throughout this process, HFR1 plays a critical role in restraining ABI4 activity to maintain an optimal endogenous ROS level, thereby ensuring seed germination under favorable environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Germination , Oxidation-Reduction , Reactive Oxygen Species , Seeds , Transcription Factors , Germination/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/physiology , Seeds/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Cytosol/metabolism , Abscisic Acid/metabolism , Hot Temperature , Stress, Physiological
3.
Sci Data ; 11(1): 297, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491031

ABSTRACT

Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.


Subject(s)
Poa , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Poa/genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL