Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172227, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38582104

ABSTRACT

The sensory quality of drinking water, and particularly its taste and odor (T&O) is a key determinant of consumer acceptability, as consumers evaluate water by their senses. Some of the conventional treatment processes to control compounds which impart unpleasant T&O have limitations because of their low efficiency and/or high costs. Therefore, there is a great need to develop an effective process for removing T&O compounds without secondary concerns. The primary objective of this study was to assess for the first time the effectiveness of spirulina-based carbon materials in removing geosmin (GSM) and 2-methylisoborneol (2-MIB) from water, two commonly occurring natural T&O compounds. The efficiency of the materials to remove environmentally relevant concentrations of GSM and 2-MIB (ng L-1) from ultrapure and raw water was investigated using a sensitive headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC/MS) method. Moreover, the genotoxic and cytotoxic effects of the spirulina-based materials were assessed for the first time to evaluate their safety and their potential in the treatment of water for human consumption. Based on the results, spirulina-based materials were found to be promising for drinking water treatment applications, as they did not exert geno-cytotoxic effects on human cells, while presenting high efficiency in removing GSM and 2-MIB from water.


Subject(s)
Drinking Water , Odorants , Spirulina , Taste , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Odorants/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods , Naphthols , Humans , Camphanes , Adsorption , Solid Phase Microextraction/methods , Carbon , Gas Chromatography-Mass Spectrometry
2.
Int J Biol Macromol ; 258(Pt 1): 128789, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38096936

ABSTRACT

Bio-cellulose derived materials (BCM) exhibit distinct structural and morphologic properties, which make them suitable for catalytic environmental remediation. In the domain of water treatment, the prospects for BCM remain bright, offering new possibilities for the development of advanced materials with low environmental impact. Research on BCM as catalysts or catalyst immobilization platforms for water treatment is still limited, mostly using laboratory-grown biomaterials for the photocatalytic degradation of dyes. BCM production costs can be significant, which can hinder its application. Thus, cost-effective alternatives using waste materials as substrates for BCM culture media are highly desirable to optimize production, while also decreasing food waste. Moreover, advances in biotechnology can enhance BCM production, tailoring its properties to meet specific requirements. Hybrid catalytic BCM composites can be easily developed, due to the straightforward functionalization of the biomaterial's network, promoting the efficiency of a variety of catalytic systems. Still considering the intrinsic features of the biomaterial, membrane development and application pose as an opportunity for continuous flow evaluations, facilitating long-term usage and reusability. Nevertheless, there are still challenges regarding catalytic BCM for water treatment (i.e., cost-effectiveness, scaling up, and consistent performance in diverse treatment scenarios). Addressing these aspects can lead to innovative environmental remediation options.


Subject(s)
Refuse Disposal , Water Purification , Cellulose/chemistry , Food , Catalysis , Biocompatible Materials
3.
Talanta ; 84(5): 1291-7, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21641440

ABSTRACT

Water treatment has become a source of concern as new pollutants and higher volumes of waste water must be treated. Emerging biological approaches, namely the use of bioreactors, for cleaning processes have been introduced. The use of bioreactors requires the development of efficient monitoring tools, preferably with real-time measurements. In this work, a couple of flow injection systems were developed and optimized for the potentiometric determination of fluoride to monitor a rotating biological contactor (RBC) bioreactor and a sequencing batch reactor (SBR) with off-line and on-line sampling. Both the RBC and the SBR bioreactors were set up for the biodegradation of the halogenated organic compound 2-fluorophenol and, as fluoride was a degradation byproduct, the process was monitored by following up its concentration. The described flow injection potentiometric methods enabled the fluoride determination within the required quantification range 0.10-100mM. The possible interferences from the growth medium were minimized in-line. The determination rate was 78 h(-1) for the off-line monitoring of RBC and 50(-1)h for the on-line monitoring of the SBR, with a sample consumption of 0.500 mL and 0.133 mL per determination, respectively. Furthermore, the overall reagent consumption was quite low. The accuracy of the system was evaluated by comparison with a batch procedure. The SBR efficiency was monitored both on-line by the flow system and off-line by HPLC, for comparison purposes.


Subject(s)
Bioreactors , Flow Injection Analysis/methods , Fluorides/analysis , Phenols/metabolism , Potentiometry/methods , Buffers , Electrodes , Fluorides/metabolism , Injections , Kinetics , Online Systems , Osmolar Concentration , Phenols/analysis , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL