Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Structure ; 31(12): 1589-1603.e6, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37776857

ABSTRACT

Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.


Subject(s)
Molecular Chaperones , Polyubiquitin , Humans , Polyubiquitin/chemistry , Protein Binding , Crystallization , Protein Structure, Tertiary , Protein Domains , Molecular Chaperones/metabolism , Fetal Proteins/metabolism , Protein-Tyrosine Kinases/metabolism
2.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 925-943, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37747038

ABSTRACT

TELSAM-fusion crystallization has the potential to become a revolutionary tool for the facile crystallization of proteins. TELSAM fusion can increase the crystallization rate and enable crystallization at low protein concentrations, in some cases with minimal crystal contacts [Nawarathnage et al. (2022), Open Biol. 12, 210271]. Here, requirements for the linker composition between 1TEL and a fused CMG2 vWa domain were investigated. Ala-Ala, Ala-Val, Thr-Val and Thr-Thr linkers were evaluated, comparing metrics for crystallization propensity and crystal order. The effect on crystallization of removing or retaining the purification tag was then tested. It was discovered that increasing the linker bulk and retaining the 10×His purification tag improved the diffraction resolution, likely by decreasing the number of possible vWa-domain orientations in the crystal. Additionally, it was discovered that some vWa-domain binding modes are correlated with scrambling of the 1TEL polymer orientation in crystals and an effective mitigation strategy for this pathology is presented.


Subject(s)
Proteins , Crystallization
3.
Open Biol ; 12(3): 210271, 2022 03.
Article in English | MEDLINE | ID: mdl-35232248

ABSTRACT

While conducting pilot studies into the usefulness of fusion to TELSAM polymers as a potential protein crystallization strategy, we observed novel properties in crystals of two TELSAM-target protein fusions, as follows. (i) A TELSAM-target protein fusion can crystallize more rapidly and with greater propensity than the same target protein alone. (ii) TELSAM-target protein fusions can be crystallized at low protein concentrations. This unprecedented observation suggests a route to crystallize proteins that can only be produced in microgram amounts. (iii) The TELSAM polymers themselves need not directly contact one another in the crystal lattice in order to form well-diffracting crystals. This novel observation is important because it suggests that TELSAM may be able to crystallize target proteins too large to allow direct inter-polymer contacts. (iv) Flexible TELSAM-target protein linkers can allow target proteins to find productive binding modes against the TELSAM polymer. (v) TELSAM polymers can adjust their helical rise to allow fused target proteins to make productive crystal contacts. (vi). Fusion to TELSAM polymers can stabilize weak inter-target protein crystal contacts. We report features of these TELSAM-target protein crystal structures and outline future work needed to validate TELSAM as a crystallization chaperone and determine best practices for its use.


Subject(s)
Molecular Chaperones , Polymers , Crystallization , Crystallography, X-Ray , Molecular Chaperones/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL